DOI QR코드

DOI QR Code

Recent Developments in Anode Materials for Li Secondary Batteries

리튬이차전지용 음극 소재 기술 개발 동향

  • 김성수 (삼성SDI 중앙연구소 에너지랩)
  • Published : 2008.08.31

Abstract

Li secondary batteries, which have been in successful commercialization, are becoming important technology as power sources in non-IT application like HEV(Hybrid Electric Vehicle) as well as in portable electronics. It is not the overstatement that the commercialization of Li secondary battery was a result of the development of carbonaceous anode material and safety mechanisms. The R&D of electrode materials of Li secondary batteries is one of the core technologies in the development and it has enormous influences on various fields as well as on the battery industry. Here, the current research of anode materials is described and the underlying problems associated with development, advantages and drawbacks is analyzed.

휴대용 전자기기의 전원으로 채용되어 상업적으로도 성공을 거두고 있는 리튬이차전지는 HEV(Hybrid Electric Vehicle)와 같은 비IT용 전원으로서도 중요성을 더하고 있다. 리튬이차전지는 리튬금속을 사용함에 따라서 초래되는 안전성을 문제를 탄소계음극을 채용하고 이에 따른 안전기구를 확보함에 의해 상용화 되었다고 할 수 있다. 이와 같이 전지에 있어 전극소재의 개발은 핵심기술이라 할 수 있으며, 점차 그 응용처가 확대되어 가고 있는 리튬이차전지의 전극소재 개발은 전지 산업뿐만 아니라 타 산업에 미치는 영향은 크다고 할 수 있다. 여기서는 리튬이차전지가 상용화되어 온 이후 채용되어온 음극과 개발중인 음극 후보에 대해 그 장단점을 분석해 보고자 한다.

Keywords

References

  1. Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, William Andrew Publishing, Park Ridge NJ. (1993)
  2. Chemistry and Physics of carbon - A series of Advances, 5: Walker PL Jr, Deposition, Structure and properties of Pyrolytic Carbon, Marcel Dekker, CRC Press, Boca, Florida. (1969)
  3. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001) https://doi.org/10.1038/35104644
  4. M. Winter et al., Insertion Electrode Materials for Lithium Batteries, Adv. Mater. 10. No. 10 (1998)
  5. X. Y. Song, K. Kinoshita, and T. R. Tran, J. Electrochem. Soc. 143, L120 (1996) https://doi.org/10.1149/1.1836395
  6. D. Billaud, E. McRae, and A. Herold, Mat. Res. Bull. 14, 857 (1979) https://doi.org/10.1016/0025-5408(79)90149-1
  7. Walter A. van Schalkwijk, Bruno Scrosati, Advances in Lithium ion Batteries, Kluwer Academic/Publishers (2002)
  8. M. winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Adv. Mat., 10, 725 (1998) https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  9. I. Mochida, S. H. Yoon, Y. Korai, K. Kanno, Y. Sakai, and M. Komatsu. In: H. Marsh, F. Rodriguez-Reinoso, eds. Science of Carbon Materials. Alcante, Spain: Publicaciones de la Universidad de Alicante (2000)
  10. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science 270, 590 (1995) https://doi.org/10.1126/science.270.5236.590
  11. J. R. Dahn, A. K. Sleigh, H. Shi, J. N. Reimers, Q. Zhong, and B. N. Way, Electrochim. Acta 38, 1179 (1993) https://doi.org/10.1016/0013-4686(93)80048-5
  12. Gholam-Abbas Nazri, Gianfranco Pistoia, Lithium batteries Science and Technology. Kluwer Academic Publishers (2004)
  13. M. Winter, K. C. Moeller; and J. O. Basenhard, in: Science and Technology of Lithium Batteries, Gholam- Abbas Nazri, Gianfranco Pistoia Eds., kluwer Academic Publishers
  14. Y. Nishi, in: Lithium Ion Batteries, M. Wakihara, and O. Yamamoto, Eds., Kodansha/Wiley-VCH, Tokyo/Weinheim, chapter.8 (1998)
  15. R. Spotnitz, J. Franklin, Journal of power sources 113, 81(2003) https://doi.org/10.1016/S0378-7753(02)00488-3
  16. M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 (1999) https://doi.org/10.1016/S0013-4686(99)00191-7
  17. R. A. Huggins, J. Power Sources, 81-82, 13-19 (1999) https://doi.org/10.1016/S0378-7753(99)00124-X
  18. S. W. Oh, S. H. Park, and Y. K. Sun, J. Power Sources, 161, 1314-1318. (2006) https://doi.org/10.1016/j.jpowsour.2006.05.050
  19. H. Yamada, T. Yamato, I. Moriguchi, and T. Kudo, Solid State Ionics, 175, 195-198 (2004) https://doi.org/10.1016/j.ssi.2003.11.031
  20. E. Baudrin, S. Cassaignon, M. Koelsch, J.-P. Jolivot, L. Dupont, and J.-M. Tarascon, Electrochem. Commun., 9, 337-342 (2007) https://doi.org/10.1016/j.elecom.2006.09.022
  21. M. Julien, M. Massot, and K. Zaghib, J. Power Sources, 136, 72-79 (2004) https://doi.org/10.1016/j.jpowsour.2004.05.001
  22. K. Ariyoshi, R. Yamato, and T. Ohzuku, Electrochimica Acta, 51, 1125 (2005) https://doi.org/10.1016/j.electacta.2005.05.053
  23. T. Ohzuku, S. Takeda, and M. Iwanaga, J. Power Sources 81-82, 90-94 (1999) https://doi.org/10.1016/S0378-7753(99)00246-3
  24. A. R. Armstrong, G. Armstrong, J. Canales, and P. G. Bruce, J. Power Sources, 146, 501-506 (2005) https://doi.org/10.1016/j.jpowsour.2005.03.057
  25. T. Brousse, R. Marchand, P.-L. Taberna, and P. Simon, J. Power Sources, 158, 571-577 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.020
  26. A. Kuhn, R. Amandi, and F. Garcia-Alvarado, J. Power Sources, 92, 221-227 (2001) https://doi.org/10.1016/S0378-7753(00)00530-9
  27. K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, J. Power Sources, 81-82, 383-387 (1999) https://doi.org/10.1016/S0378-7753(99)00111-1
  28. J. Wolfenstine, J. Power sources, 79, 111 (1999) https://doi.org/10.1016/S0378-7753(99)00052-X
  29. T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc. 142, 1431 (1995) https://doi.org/10.1149/1.2048592
  30. A. Kuhn, R. Amandi, and F. Garcia-Alvarado, J. Power Sources, 92, 221-227 (2001) https://doi.org/10.1016/S0378-7753(00)00530-9
  31. P. Polzot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature, 407, 496 (2000) https://doi.org/10.1038/35035045

Cited by

  1. MnO/C nanocomposite prepared by one-pot hydrothermal reaction for high performance lithium-ion battery anodes vol.32, pp.1, 2015, https://doi.org/10.1007/s11814-014-0265-2
  2. Electrochemical Characteristics of Cr Added Li4Ti5O12Prepared by Sol-gel Method vol.14, pp.1, 2011, https://doi.org/10.5229/JKES.2011.14.1.027
  3. Electrochemical performances of lithium and sodium ion batteries based on carbon materials 2017, https://doi.org/10.1016/j.jiec.2017.12.036