• Title/Summary/Keyword: Li energy storage

Search Result 213, Processing Time 0.027 seconds

Applications and Challenges of Lithium-Sulfur Electrochemical Batteries

  • Mohammed Jasim M. Al Essa
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This paper presents applications of lithium-sulfur (Li-S) energy storage batteries, while showing merits and demerits of several techniques to mitigate their electrochemical challenges. Unmanned aerial vehicles, electric cars, and grid-scale energy storage systems represent main applications of Li-S batteries due to their low cost, high specific capacity, and light weight. However, polysulfide shuttle effects, low conductivities, and low coulombic efficiencies signify key challenges of Li-S batteries, causing high volumetric changes, dendritic growths, and limited cycling performances. Solid-state electrolytes, interfacial interlayers, and electrocatalysts denote promising methods to mitigate such challenges. Moreover, nanomaterials have capability to improve kinetic reactions of Li-S batteries based on several properties of nanoparticles to immobilize sulfur in cathodes, stabilizing lithium in anodes while controlling volumetric growths. Li-S energy storage technologies are able to satisfy requirements of future markets for advanced rechargeable batteries with high-power densities and low costs, considering environmentally friendly systems based on renewable energy sources.

Advances in Li-ion Batteries

  • Lee, Se-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • Efficient and durable electrical energy storage is one of the major factors limiting the wide-spread adoption of renewable energy. Since lithium-ion batteries (LIBs) were first commercialized in the early 1990s, LIBs have emerged as an important energy storage device for portable electronics. LIBs are very desirable because of their high energy storage per volume and per mass. However, LIBs with high energy and power as well as higher stability are needed for their use in a variety of energy storage applications such as MEMS devices, PDA, plug-in hybrids, all-electric vehicles and large scale utility systems. In this talk, I will discuss present energy perspective, especially energy storage and its role in renewable energy. After that I will discuss the recent advances in nanostructured materials and interface engineering that have led to the achievement of improved Li-ion batteries. Finally I will talk aboutcritical issues that need to be addressed to obtain further improvements in Li-ion batteries.

  • PDF

Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes (전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향)

  • Jeong-Myeong Yoon;Cheol-Min Park
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.466-477
    • /
    • 2023
  • The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering the potential to address these issues. By employing nonflammable solid electrolytes and utilizing high-capacity electrode materials, ASSBs have demonstrated improved safety and energy density. Automotive and energy storage industries, in particular, have recognized the significance of advancing ASSB technology. Although the use of Li metal as ASSB anode is promising due to its high theoretical capacity and the expectation that Li dendrites will not form in solid electrolytes, persistent problems with Li dendrite formation during cycling remain. Therefore, the exploration of novel high-performance anode materials for ASSBs is highly important. Recent research has focused extensively on alloy-based anodes for ASSBs, owing to their advantages of no dendrite formation and high-energy density. This study provides a comprehensive review of the latest advancements and challenges associated with alloy-based anodes for ASSBs.

Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials

  • Kim, In Yea;Shin, Seo Yoon;Ko, Jea Hwan;Lee, Kang Soo;Woo, Sung Pil;Kim, Dong Kyu;Yoon, Young Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.9-22
    • /
    • 2017
  • Many new functional materials have been studied for efficient production and storage of energy. Many new materials such as sodium-based and sulfide-based materials have been proposed for energy storage, but research on Li batteries is still dominant. Due to the influence of environmental concerns regarding nuclear energy, interest in and research on fusion power are steadily increasing. For the commercialization of nuclear fusion, a design standard based on a considerable level of physical analysis and modeling is proposed. Nevertheless, limitations of existing materials in nuclear fusion environments limit practical applications. Tritium propagation material for continuous fusion reaction is one of the core materials, and therefore research on this material is being carried out intermittently. The key material for Li-based energy storage and tritium generation is the functional material Li-M-O. In this review, a structural description of functional Li-M-O system materials and technical trends for its applications are introduced.

Analysis of Connected Operations of PV Source and Li Energy Storage Equipment to Power System (태양광 전원과 리튬 에너지 저장장치의 연계운전시 특성 해석)

  • Kim, Deok Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.106-112
    • /
    • 2014
  • This paper presents the analysis of connected operation of photo voltaic source and Li energy storage system. The micro-grid has been installed and operated for several years at the campus of USF and has been a role of test bed. Photo voltaic source has been strongly influenced by the location, weather and climate of a installed area and Li battery is connected directly to the photo voltaic source to compensate for the limitations. The Li battery is operated to supply power output to the grid by the charging or discharging mode based on the average power output of the PV source which is calculated from monitored data for several years. The load of the PV and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery are analyzed in detail. In connected operations of PV and Li battery to power system, the PV and Li battery is operated to supply constant power during only day time or peak time to increase load shedding ratio and efficient usage of generation sources in power system.

Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries

  • Ahn, Ja-Hwa;Eom, Ji-Yong;Kim, Jong-Huy;Kim, Hye Won;Lee, Byung Cheol;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.

Trend in Research and Development of Lithium Complex Hydrides for Hydrogen Storage (리튬계 수소저장재료의 연구개발 동향)

  • Shim, Jae-Dong;Shim, Jae-Hyeok;Ha, Heon-Phil
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.159-167
    • /
    • 2012
  • Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero $CO_2$ emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% $H_2$, moderate hydrogen release temperature below $100^{\circ}C$, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.

Physicochemical Behaviors of Oxygen and Sulfur in Li Batteries (리튬 전지에서 산소, 황의 물리화학적 거동)

  • Park, Dong-Won;Kim, Jin Won;Kim, Jongwon;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.247-252
    • /
    • 2012
  • Of late, the development of advanced batteries with high power density and capacity has been indispensible for pushing ahead with much wider applications to electric vehicles and smart IT devices. However, a conventional Li-ion battery contains a limited energy density due to various technological challenges such that other types of Li batteries including Li-S and Li-air have been extensively studied due to their interestingly high energy capacities. Sulfur and oxygen, of which both are cathode materials, showing similar physicochemical characteristics have widely been available which may also contribute to the commercialization of these batteries. In this review, we introduce some perspectives in improving these advanced Li batteries through several approaches such as the provision of porous cathode structures, the optimization of cathode-electrolyte interfaces and the modification of Li anodes.

Electrochromic Properties of Li+-Modified Prussian Blue (리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구)

  • Yoo, Sung-Jong;Lim, Ju-Wan;Park, Sun-Ha;Won, Ho-Youn;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • The durability problem of Prussian blue in non-aqueous $Li_+$-based electrolytes has been due to the degradation of the Prussian blue electrode matrix during the insertion/extraction processes by $Li_+$. In this work, we designed and synthesised the Prussian blue without reducing the electrochromic performance in non-aqueous $Li_+$-based electrolytes. Prussian blue was electrodeposited on a glass which has ITO coating, and the coating solution is a mixture solution of $FeCl_3\;and\;K_3Fe(CN)_6$ with deionized water added HCl, KCl, and LiCl, respectively. The durability of Prussian blue was evaluated by an in-situ transmittance measurement during a continuous and pulse potential cycling test, and measured by electroactive layer thickness due to evaluating the degradation.

Lithium-ion Battery Energy Storage System for Power Quality Improvement in Electrical Propulsion Ships (전기추진선박의 전력품질 개선을 위한 리튬-이온 배터리 에너지저장시스템 적용)

  • Ku, Hyun-Keun;Seo, Hye-Rim;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.351-355
    • /
    • 2015
  • This paper explained the application of a lithium-ion battery energy storage system to electric propulsion ships. The power distribution in electric propulsion ships has low power quality because of the variation in the power consumption of the propulsion motor. For proper operation of the ship, the power quality needs to be improved, and the battery energy storage system is used to solve power-quality problems. The simulation models of electric propulsion ship and battery energy storage systems are constructed on MATLAB/Simulink to verify the improvement in power quality. The proposed system is applied in various scenarios of the propulsion motor state. The power quality achieved by using the battery energy storage system in both voltage and frequency satisfies the standards set by IEC-60092/101.