• Title/Summary/Keyword: Lewis acid-base interaction

Search Result 6, Processing Time 0.02 seconds

Theoretical Studies for the Supercritical CO2 Solubility of Organophosphorous Molecules: Lewis Acid-Base Interactions and C-H···O Weak Hydrogen Bonding

  • Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2454-2458
    • /
    • 2007
  • Exploring the basic concepts for the design of CO2-philic molecules is important due to the possibility for “green” chemistry in supercritical CO2 as substitute solvent systems. The Lewis acid-base interactions and C?H…O weak hydrogen bonding were suggested as two key factors for the solubility of CO2-philic molecules. We have performed high level quantum mechanical calculations for the van der Waals complexes of CO2 with trimethylphosphate and trimethylphosphine oxide, which have long been used for metal extractants in supercritical CO2 fluid. Structures and energies were calculated using the MP2/6-31+G(d) and recently developed multilevel methods. These studies indicate that the Lewis acid-base interactions have larger impact on the stability of structure than the C?H…O weak hydrogen bonding. The weak hydrogen bonds in trimethylphosphine oxide have an important role to the large supercritical CO2 solubility when a metal is bound to the oxygen atom of the P=O group. Trimethylphosphate has many Lewis acid-base interaction sites so that it can be dissolved into supercritical CO2 easily even when it has metal ion on the oxygen atom of the P=O group, which is indispensable for a good extractant.

A Educational Study on Detection of Fluoride by Borane Compounds (보레인 화합물을 이용한 불소 이온 검출에 관한 교육 연구)

  • Lee, Kang Mun
    • Korean Educational Research Journal
    • /
    • v.37 no.1
    • /
    • pp.33-45
    • /
    • 2016
  • We propose a research for detection of the fluoride ion using borane compounds. Based on the Lewis acid-base reaction, we discussed the fundamental of sensing for fluoride ion. One of the important aspects in the chemistry of organoboranes is their behaviors as Lewis acids, which is a result of the vacant $2p_{\pi}$ orbital on the tricoordinate boron center. The electronic interaction between boron atoms and ${\pi}$-orbitals of donor molecules, constructed from the carbon 2p orbitals, is generally strong. Boron atoms can reach the desired octet configuration either through ${\pi}$-overlap with a suitable X or through formation of Lewis acid-Lewis base complexes.

  • PDF

Hydrophilic Modification of Poly(ethylene oxide) by UV Irradiation

  • Koo, Gwang-Hoe;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.16-20
    • /
    • 2009
  • Films of Poly(ethylene oxide), PEO, were modified to impart hydrophilicity via UV irradiation. The UV irradiation treatment produced new photo-oxidized groups of carbonyl and ether groups as indicated in ATR and ESCA analysis. It was found that water contact angle decreased from $15^{\circ}C$ to $10^{\circ}C$ and total surface energy of PEO increased from 54.2 mN/m to 76.6 mN/m with increasing UV energy, which was attributed to significant contribution of acid base interaction of the photo-oxidized PEO rather than nonpolar interaction originating from the dominant increase in Lewis acid parameter. The increased hydrophilicity and surface energy were also proved by the decreased water wetting time.

Solubilities of Salen Derivatives and Their Cobalt Complex in Liquid and Supercritical CO2

  • Koh, Seung-Hyun;Jeon, Byung-Wan;Kim, Ha-Kwon;Park, Kwang-Heon;Kim, Hong-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.471-475
    • /
    • 2004
  • The solubility of N,N'-Bis(salicylidene) ethylenediamine (n-salen) and N,N'-bis(3,5-di-tert-butylsalicylidene) ethylenediamine (t-butyl-salen) was studied with in-situ UV-VIS spectrometer. n-Salen is 3-5 times more soluble than t-butyl-salen in liquid or supercritical $CO_2$. This behavior may be attributed to Lewis acid-base interaction between salen and $CO_2$. The chelation of salen with $Co^{++}$ ion in supercritical condition was confirmed to be fast enough above room temperature. However, the metal ion extraction capability of t-butyl salen is relatively poor because of its low solubility and ionic nature of complex.

Effect of NiO on Microstructure and Properties of PMN-PT-BT Ceramics Prepared by Mixed Oxide Method

  • Han, Kyoung-Ran;Jung, Jung-Woong;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.884-888
    • /
    • 2004
  • Effects of NiO were studied in aspects of dielectric properties and microstructure of $0.96(0.91Pb(Mg_{1/3}Nb_{2/3})O_3-0.09PbTiO_3)­0.04BaTiO_3$ (PMN-PT-BT, PBT). The PBT was prepared by a conventional mixed oxide method using $(MgCO_3)_4{\cdot}Mg(OH)_2$ instead of MgO through Lewis acid-base interaction. NiO was added in the range of 0.5 to $3.0\;wt\%$ as thermally decomposable $2NiCO_3{\cdot}3Ni(OH)_2$ and it seemed to enhance densification to a large extent below $1000^{\circ}C$. But all the systems gave rise to ceramics with almost same relative sintered density of 96% by sintering at $1000^{\circ}C$ for 2 h. But it turned out that the addition of NiO was detrimental to dielectric constant but beneficial to the loss of dielectric constant.

Enhanced removal of phosphate on modified ion exchanger with competing ion (음이온 교환수지를 이용한 인제거 향상)

  • Nam, Ju-Hee;Lee, Sang-Hyup;Choi, Jae-Woo;Hong, Seok-Won;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.121-128
    • /
    • 2013
  • The concern for dissolved phosphate in water/wastewater has been increasing because of the risk for eutrophication. A variety of conventional and advanced technologies were applied to meet the enforced new regulation of phosphate around the world. However, there still remained a lot of challenge because most introduced/developed method, for example, biological and physic-chemical treatment is not easy to satisfy the new regulation of phosphate in water. In order to meet the new regulation, the application of ion exchanger has been tried which showed that the removal efficiency for phosphate was strongly determined by in the presence of the competing ion, especially sulfate. As results, a new class of ion exchanger governed by ligand exchange was developed and investigated to increase the selectivity for phosphate. The current study using organic/inorganic anion exchanger developed with Lewis acid-base interaction confirms the selectivity for phosphate over sulfate. According to isotherm test and column test, the value of the maximum phosphate uptake (Q) showed 64 mg/g as $po{_4}^{3-}$ and the breakthrough for phosphate occurs after 1000 min and completely finishes at 2500 min, respectively.