Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.12.2454

Theoretical Studies for the Supercritical CO2 Solubility of Organophosphorous Molecules: Lewis Acid-Base Interactions and C-H···O Weak Hydrogen Bonding  

Kim, Kyung-Hyun (Department of Chemistry, Kyung Hee University)
Kim, Yong-Ho (Department of Chemistry, Kyung Hee University)
Publication Information
Abstract
Exploring the basic concepts for the design of CO2-philic molecules is important due to the possibility for “green” chemistry in supercritical CO2 as substitute solvent systems. The Lewis acid-base interactions and C?H…O weak hydrogen bonding were suggested as two key factors for the solubility of CO2-philic molecules. We have performed high level quantum mechanical calculations for the van der Waals complexes of CO2 with trimethylphosphate and trimethylphosphine oxide, which have long been used for metal extractants in supercritical CO2 fluid. Structures and energies were calculated using the MP2/6-31+G(d) and recently developed multilevel methods. These studies indicate that the Lewis acid-base interactions have larger impact on the stability of structure than the C?H…O weak hydrogen bonding. The weak hydrogen bonds in trimethylphosphine oxide have an important role to the large supercritical CO2 solubility when a metal is bound to the oxygen atom of the P=O group. Trimethylphosphate has many Lewis acid-base interaction sites so that it can be dissolved into supercritical CO2 easily even when it has metal ion on the oxygen atom of the P=O group, which is indispensable for a good extractant.
Keywords
$CO_2$ solubility; Lewis acid-base interaction; Weak hydrogen bonding; Multilevel calculations; Supercritical $CO_2$;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Ngo, T. T.; Bush, D.; Eckert, C. A.; Liotta, C. L. AIChE J. 2001, 47, 2566   DOI   ScienceOn
2 Samsonov, M. D.; Wai, C. M.; Lee, S.-C.; Kulyako, Y.; Smart, N. G. Chem. Commun. 2001, 2001, 1868
3 Lin, Y.; Smart, N. G.; Wai, C. M. Environ. Sci. Technol. 1995, 29, 2706   DOI   ScienceOn
4 Schmitt, W. J.; Reid, R. C. Chem. Eng. Commun. 1988, 64, 155   DOI
5 Kilic, S.; Michalik, S.; Wang, Y.; Johnson, J. K.; Enick, R. M.; Beckman, E. J. Ind. Eng. Chem. Res. 2003, 42, 6415   DOI   ScienceOn
6 Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 12590   DOI   ScienceOn
7 Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441   DOI   ScienceOn
8 Bukowski, R.; Sazalewicz, K.; Chabalowski, C. F. J. Chem. Phys. A 1999, 103, 7322   DOI   ScienceOn
9 Salaniwal, S.; Cui, S.; Cochran, H. D.; Cummings, P. T. Ind. Eng. Chem. Res. 2000, 39, 4543   DOI   ScienceOn
10 Musah, R. A.; Jensen, G. M.; Rosenfeld, R. J.; McRee, D. E.; Goodin, D. B. J. Am. Chem. Soc. 1997, 119, 9083   DOI   ScienceOn
11 Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. J. Am. Chem. Soc. 2000, 122, 4750   DOI   ScienceOn
12 Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 14818   DOI   ScienceOn
13 Raveendran, P.; Ikushima, Y.; Wallen, S. L. Acc. Chem. Res. 2005, 38, 478   DOI   ScienceOn
14 Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Phys. Chem. A 2003, 107, 10311   DOI   ScienceOn
15 Kim, K. H.; Kim, Y. J. Phys. Chem. A 2007, submitted
16 Diep, P.; Jordan, K. D.; Johnson, J. K.; Beckman, E. J. J. Phys. Chem. A 1998, 102, 2231   DOI   ScienceOn
17 Johansson, A.; Kollman, P.; Rothenberg, S. Theor. Chim. Acta 1973, 29, 167   DOI
18 Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553   DOI   ScienceOn
19 Kim, K. H.; Kim, Y. Theor. Chem. Acc. 2006, 115, 18   DOI   ScienceOn
20 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Rev. C.09; Gaussian, Inc.: Wallingford, CT, 2004
21 Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, 1999
22 Green, R. D. Hydrogen Bonding by C-H Groups; Macmillan: London, 1974
23 Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, 1997
24 Steiner, T. Crystallogr. Rev. 1996, 6, 1   DOI   ScienceOn
25 Desiraju, G. R. Angew. Chem., Int. Ed. 1995, 34, 2311   DOI
26 Shimon, L. J. W.; Vaida, M.; Addadi, L.; Lahav, M.; Leiserowitz, L. J. Am. Chem. Soc. 1990, 112, 6215   DOI
27 Berger, I.; Egli, M.; Rich, A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12116   DOI   ScienceOn
28 Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. 1999, 103, 5129   DOI   ScienceOn
29 Morokuma, K.; Kitaura, K. In Chemical Applications of Atomic and Molecular Electrostatic Potentials; Politzer, P., Truhlar, D. G., Eds.; Plenum: New York, 1981; p 215
30 Petterson, L.; Wahlgren, U. Chem. Phys. 1982, 69, 185   DOI   ScienceOn
31 Fast, P. L.; Sanchez, M. L.; Corchado, J. C.; Truhlar, D. G. J. Chem. Phys. 1999, 110, 11679   DOI
32 Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999, 306, 407   DOI   ScienceOn
33 Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 3139   DOI   ScienceOn
34 Rice, J. K.; Niemeyer, E. D.; Dunbar, R. A.; Bright, F. V. J. Am. Chem. Soc. 1995, 117, 5830
35 Wai, C. M.; Waller, B. Ind. Eng. Chem. Res. 2000, 39, 4837   DOI   ScienceOn
36 Fast, P. L.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 6111   DOI   ScienceOn
37 Nesbitt, D. J. Chem. Rev. 1988, 88, 843   DOI
38 Rodgers, J. M.; Lynch, B. J.; Fast, P. L.; Chuang, Y.-Y.; Pu, J.; Truhlar, D. G. Multilevel-version 4.0; University of Minnesota: Minneapolis, MN, 2004
39 Illies, A. J.; McKee, M. L.; Schlegel, H. B. J. Phys. Chem. A 1987, 91, 3489   DOI
40 Jucks, K. W.; Huang, Z. S.; Miller, R. E.; Lafferty, W. J. J. Chem. Phys. 1987, 86, 4341   DOI
41 Novick, S. E.; Davies, P. B.; Dyke, T. R.; Klemperer, W. J. Am. Chem. Soc. 1973, 95, 8547   DOI
42 Tsuzuki, S.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Chem. Phys. 1998, 109, 2169   DOI   ScienceOn
43 Raveendran, P.; Wallen, S. L. J. Phys. Chem. B 2003, 107, 1473   DOI   ScienceOn
44 Park, C.-Y.; Kim, Y.; Kim, Y. J. Chem. Phys. 2001, 115, 2926
45 Ahrland, S. In The Chemistry of the Actinide Elements, 2nd ed.; Katz, J. J., Seaborg, G. T., Moss, L. R., Eds.; Chapman and Hall Ltd.: 1986; Vol. 2, p 1521