DOI QR코드

DOI QR Code

Theoretical Studies for the Supercritical CO2 Solubility of Organophosphorous Molecules: Lewis Acid-Base Interactions and C-H···O Weak Hydrogen Bonding

  • Published : 2007.12.20

Abstract

Exploring the basic concepts for the design of CO2-philic molecules is important due to the possibility for “green” chemistry in supercritical CO2 as substitute solvent systems. The Lewis acid-base interactions and C?H…O weak hydrogen bonding were suggested as two key factors for the solubility of CO2-philic molecules. We have performed high level quantum mechanical calculations for the van der Waals complexes of CO2 with trimethylphosphate and trimethylphosphine oxide, which have long been used for metal extractants in supercritical CO2 fluid. Structures and energies were calculated using the MP2/6-31+G(d) and recently developed multilevel methods. These studies indicate that the Lewis acid-base interactions have larger impact on the stability of structure than the C?H…O weak hydrogen bonding. The weak hydrogen bonds in trimethylphosphine oxide have an important role to the large supercritical CO2 solubility when a metal is bound to the oxygen atom of the P=O group. Trimethylphosphate has many Lewis acid-base interaction sites so that it can be dissolved into supercritical CO2 easily even when it has metal ion on the oxygen atom of the P=O group, which is indispensable for a good extractant.

Keywords

References

  1. Bukowski, R.; Sazalewicz, K.; Chabalowski, C. F. J. Chem. Phys. A 1999, 103, 7322 https://doi.org/10.1021/jp991212p
  2. Salaniwal, S.; Cui, S.; Cochran, H. D.; Cummings, P. T. Ind. Eng. Chem. Res. 2000, 39, 4543 https://doi.org/10.1021/ie000144m
  3. Rice, J. K.; Niemeyer, E. D.; Dunbar, R. A.; Bright, F. V. J. Am. Chem. Soc. 1995, 117, 5830
  4. Ngo, T. T.; Bush, D.; Eckert, C. A.; Liotta, C. L. AIChE J. 2001, 47, 2566 https://doi.org/10.1002/aic.690471119
  5. Samsonov, M. D.; Wai, C. M.; Lee, S.-C.; Kulyako, Y.; Smart, N. G. Chem. Commun. 2001, 2001, 1868
  6. Wai, C. M.; Waller, B. Ind. Eng. Chem. Res. 2000, 39, 4837 https://doi.org/10.1021/ie0002879
  7. Lin, Y.; Smart, N. G.; Wai, C. M. Environ. Sci. Technol. 1995, 29, 2706 https://doi.org/10.1021/es00010a036
  8. Schmitt, W. J.; Reid, R. C. Chem. Eng. Commun. 1988, 64, 155 https://doi.org/10.1080/00986448808940234
  9. Kilic, S.; Michalik, S.; Wang, Y.; Johnson, J. K.; Enick, R. M.; Beckman, E. J. Ind. Eng. Chem. Res. 2003, 42, 6415 https://doi.org/10.1021/ie030288b
  10. Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 12590 https://doi.org/10.1021/ja0174635
  11. Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441 https://doi.org/10.1021/ar950135n
  12. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, 1999
  13. Green, R. D. Hydrogen Bonding by C-H Groups; Macmillan: London, 1974
  14. Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, 1997
  15. Steiner, T. Crystallogr. Rev. 1996, 6, 1 https://doi.org/10.1080/08893119608035394
  16. Desiraju, G. R. Angew. Chem., Int. Ed. 1995, 34, 2311 https://doi.org/10.1002/anie.199523111
  17. Shimon, L. J. W.; Vaida, M.; Addadi, L.; Lahav, M.; Leiserowitz, L. J. Am. Chem. Soc. 1990, 112, 6215 https://doi.org/10.1021/ja00173a008
  18. Berger, I.; Egli, M.; Rich, A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12116 https://doi.org/10.1073/pnas.93.22.12116
  19. Musah, R. A.; Jensen, G. M.; Rosenfeld, R. J.; McRee, D. E.; Goodin, D. B. J. Am. Chem. Soc. 1997, 119, 9083 https://doi.org/10.1021/ja9716766
  20. Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. J. Am. Chem. Soc. 2000, 122, 4750 https://doi.org/10.1021/ja993600a
  21. Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 14818 https://doi.org/10.1021/ja027337g
  22. Raveendran, P.; Ikushima, Y.; Wallen, S. L. Acc. Chem. Res. 2005, 38, 478 https://doi.org/10.1021/ar040082m
  23. Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Phys. Chem. A 2003, 107, 10311 https://doi.org/10.1021/jp027208m
  24. Kim, K. H.; Kim, Y. J. Phys. Chem. A 2007, submitted
  25. Diep, P.; Jordan, K. D.; Johnson, J. K.; Beckman, E. J. J. Phys. Chem. A 1998, 102, 2231 https://doi.org/10.1021/jp9730306
  26. Johansson, A.; Kollman, P.; Rothenberg, S. Theor. Chim. Acta 1973, 29, 167 https://doi.org/10.1007/BF00529439
  27. Morokuma, K.; Kitaura, K. In Chemical Applications of Atomic and Molecular Electrostatic Potentials; Politzer, P., Truhlar, D. G., Eds.; Plenum: New York, 1981; p 215
  28. Petterson, L.; Wahlgren, U. Chem. Phys. 1982, 69, 185 https://doi.org/10.1016/0301-0104(82)88145-7
  29. Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. 1999, 103, 5129 https://doi.org/10.1021/jp9903460
  30. Fast, P. L.; Sanchez, M. L.; Corchado, J. C.; Truhlar, D. G. J. Chem. Phys. 1999, 110, 11679 https://doi.org/10.1063/1.479112
  31. Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999, 306, 407 https://doi.org/10.1016/S0009-2614(99)00493-5
  32. Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 3139 https://doi.org/10.1021/jp9900382
  33. Fast, P. L.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 6111 https://doi.org/10.1021/jp000408i
  34. Kim, K. H.; Kim, Y. Theor. Chem. Acc. 2006, 115, 18 https://doi.org/10.1007/s00214-005-0069-x
  35. Park, C.-Y.; Kim, Y.; Kim, Y. J. Chem. Phys. 2001, 115, 2926
  36. Ahrland, S. In The Chemistry of the Actinide Elements, 2nd ed.; Katz, J. J., Seaborg, G. T., Moss, L. R., Eds.; Chapman and Hall Ltd.: 1986; Vol. 2, p 1521
  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Rev. C.09; Gaussian, Inc.: Wallingford, CT, 2004
  38. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553 https://doi.org/10.1080/00268977000101561
  39. Rodgers, J. M.; Lynch, B. J.; Fast, P. L.; Chuang, Y.-Y.; Pu, J.; Truhlar, D. G. Multilevel-version 4.0; University of Minnesota: Minneapolis, MN, 2004
  40. Illies, A. J.; McKee, M. L.; Schlegel, H. B. J. Phys. Chem. A 1987, 91, 3489 https://doi.org/10.1021/j100297a007
  41. Jucks, K. W.; Huang, Z. S.; Miller, R. E.; Lafferty, W. J. J. Chem. Phys. 1987, 86, 4341 https://doi.org/10.1063/1.451895
  42. Nesbitt, D. J. Chem. Rev. 1988, 88, 843 https://doi.org/10.1021/cr00088a003
  43. Novick, S. E.; Davies, P. B.; Dyke, T. R.; Klemperer, W. J. Am. Chem. Soc. 1973, 95, 8547 https://doi.org/10.1021/ja00807a008
  44. Tsuzuki, S.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Chem. Phys. 1998, 109, 2169 https://doi.org/10.1063/1.476730
  45. Raveendran, P.; Wallen, S. L. J. Phys. Chem. B 2003, 107, 1473 https://doi.org/10.1021/jp027026s

Cited by

  1. vol.57, pp.7, 2012, https://doi.org/10.1021/je300232a
  2. Adsorption of Bitumen Model Compounds on Kaolinite in Liquid and Supercritical Carbon Dioxide Solvents: A Study by Periodic Density Functional Theory and Molecular Theory of Solvation vol.29, pp.5, 2015, https://doi.org/10.1021/ef502202q
  3. -amyl phosphate in supercritical carbon dioxide and its application to selective extraction of uranium vol.52, pp.14, 2017, https://doi.org/10.1080/01496395.2017.1287737
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Intermolecular Hydrogen Bonding and Vibrational Analysis of N,N-Dimethylformamide Hexamer Cluster vol.30, pp.11, 2007, https://doi.org/10.5012/bkcs.2009.30.11.2595
  6. Experimental determination and model correlation for the solubilities of trialkyl phosphates in supercritical carbon dioxide vol.6, pp.56, 2007, https://doi.org/10.1039/c6ra10897k
  7. Highly efficient and selective photoreduction of CO2 to CO with nanosheet g-C3N4 as compared with its bulk counterpart vol.195, pp.None, 2021, https://doi.org/10.1016/j.envres.2021.110880