• Title/Summary/Keyword: Levi-Civita

Search Result 33, Processing Time 0.017 seconds

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin;Suh, Young Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.895-920
    • /
    • 2021
  • In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

CURVATURES OF SEMI-SYMMETRIC METRIC CONNECTIONS ON STATISTICAL MANIFOLDS

  • Balgeshir, Mohammad Bagher Kazemi;Salahvarzi, Shiva
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.149-164
    • /
    • 2021
  • By using a statistical connection, we define a semi-symmetric metric connection on statistical manifolds and study the geometry of these manifolds and their submanifolds. We show the symmetry properties of the curvature tensor with respect to the semi-symmetric metric connections. Also, we prove the induced connection on a submanifold with respect to a semi-symmetric metric connection is a semi-symmetric metric connection and the second fundamental form coincides with the second fundamental form of the Levi-Civita connection. Furthermore, we obtain the Gauss, Codazzi and Ricci equations with respect to the new connection. Finally, we construct non-trivial examples of statistical manifolds admitting a semi-symmetric metric connection.

SOME RESULTS ON CONCIRCULAR VECTOR FIELDS AND THEIR APPLICATIONS TO RICCI SOLITONS

  • CHEN, BANG-YEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1535-1547
    • /
    • 2015
  • A vector field on a Riemannian manifold (M, g) is called concircular if it satisfies ${\nabla}X^v={\mu}X$ for any vector X tangent to M, where ${\nabla}$ is the Levi-Civita connection and ${\mu}$ is a non-trivial function on M. A smooth vector field ${\xi}$ on a Riemannian manifold (M, g) is said to define a Ricci soliton if it satisfies the following Ricci soliton equation: $$\frac{1}{2}L_{\xi}g+Ric={\lambda}g$$, where $L_{\xi}g$ is the Lie-derivative of the metric tensor g with respect to ${\xi}$, Ric is the Ricci tensor of (M, g) and ${\lambda}$ is a constant. A Ricci soliton (M, g, ${\xi}$, ${\lambda}$) on a Riemannian manifold (M, g) is said to have concircular potential field if its potential field is a concircular vector field. In the first part of this paper we determine Riemannian manifolds which admit a concircular vector field. In the second part we classify Ricci solitons with concircular potential field. In the last part we prove some important properties of Ricci solitons on submanifolds of a Riemannian manifold equipped with a concircular vector field.