• Title/Summary/Keyword: Level of Reliability

Search Result 3,190, Processing Time 0.038 seconds

A Study on the Assessment and Application of Outage Cost for Power System Expansion Planning (계통계획 수위용 공급지장비의 추정방법 및 이의 응용에 관한 연구)

  • 최재석;강성록;트룬틴트란;김호용;김슬기
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.285-295
    • /
    • 2004
  • The outage cost assessment has an important position for determination of the optimal level or optimal range of reliability for power system expansion planning. Establishing the worth of service reliability is a very difficult and subjective task. While the utility cost(reliability cost) will generally increase as consumers are provided with higher reliability, the consumer costs(reliability worth) associated with supply interruptions will decrease as the reliability increases. The total costs to society are the sum of these two individual costs and the optimum or target level of reliability is achieved at minimum point of the total cost curve. This paper addresses the role, need and assessment algorithms and methodologies of the outage cost in power system expansion planning. In a case study, the outage cost has been assessed using macro approach for our country 15years(1986-200l) in the case study. Additionally, determination processing of optimum reliability level is presented in another case study with the five buses MRBTS.

Development of a Method for Reliability Evaluation of Transmission System under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 송전계통 신뢰도 평가방법의 개발)

  • Cha, Jun-Min;Kim, Hong-Sik;Choi, Jae-Seok;Oh, Kwang-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.397-399
    • /
    • 2000
  • This paper presents a method for assessing reliability indices of transmission system. Because successful operation of electric power under the deregulated electricity market depends on transmission system reliability management, quantity evaluation of transmission system reliability is very important. The key point idea is based on that the reliability level of transmission system is equal to reliability level difference of between composite power system(HLII) and generation system(HLI). It is sure that risk indices of reliability of composite power system are larger than those of generation system. It is the reason that composite power system includes uncertainties and capacity limit of transmission lines. The characteristics and effectiveness of this methodology are illustrated by the case study using MRBTS.

  • PDF

Developing a Non-Periodic Preventive Maintenance Model Guaranteeing the Minimum Reliability (최소 신뢰도를 보장하는 비 주기적 예방보전 모형 개발)

  • Lee, Juhyun;Ahn, Suneung
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2018
  • Purpose: This paper proposes the non-periodic preventive maintenance policy based on the level of cumulative hazard intensity. We aim to construct a cost-effectiveness on the proposed model with relaxing the constraint on reliability. Methods: We use the level of cumulative hazard intensity as a condition variable, instead of reliability. Such a level of cumulative hazard intensity can derive the reliability which decreases as the frequency of preventive maintenance action increases. We also model the imperfect preventive maintenance action using the proportional age setback model. Conclusion: We provide a numerical example to illustrate the proposed model. We also analyze how the parameters of our model affect the optimal preventive maintenance policy. The results show that as long as high reliability is guaranteed, the inefficient preventive maintenance action is performed reducing the system operation time. Moreover, the optimal value of the proposed model is sensitive to changes in preventive maintenance cost and replacement cost.

An Economic Design of Reliability Demonstration Test for Product with Lognormal lifetime distribution (수명이 대수정규분포를 따르는 제품에 대한 경제적인 신뢰성 입증시험 설계)

  • Kwon, Young-Il
    • Journal of Applied Reliability
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Reliability demonstration tests with zero-failure acceptance criterion are most commonly used in the field of reliability application since they require fewer test samples and less test time compared to other test methods that guarantee the same reliability with a given confidence level. For products with lognormal lifetime distribution, an economic zero-failure test plan is developed that minimizes the total cost related to perform a life test to guarantee a specified reliability of a product with a given confidence level. A numerical example is provided to illustrate the use of the proposed test plan.

A Level II reliability approach to rock slope stability (암반사면 안정성에 대한 Level II 신뢰성 해석 연구)

  • Park, Hyuck-Jin;Kim, Jong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.319-326
    • /
    • 2004
  • Uncertainty is inevitably involved in rock slope engineering since the rock masses are formed by natural process and subsequently the geotechnical characteristics of rock masses cannot be exactly obtained. Therefore the reliability analysis method has been suggested to deal properly with uncertainty. The reliability analysis method can be divided into level I, II and III on the basis of the approach for consideration of random variable and probability density function of reliability function. The level II approach, which is focused in this study, assumes the probability density function of random variables as normal distribution and evaluates the probability of failure with statistical moments such as mean and standard deviation. This method has the advantage that can be used the problem which the Monte Carlo simulation approach cannot be applied since the complete information on the random variables are not available. In this study, the analysis results of level II reliability approach compared with the analysis results of level III approach to verify the appropriateness of the level II approach. In addition, the results are compared with the results of the deterministic analysis.

  • PDF

자동차엔진의 품질보증데이터 분석

  • Uk, Baek-Jae
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.183-190
    • /
    • 2004
  • Found important components in terms of frequency in the assembly (but not in terms of money). Component 39*** was most important. The failure mode was N69(no light on warning signal the cause of the failure was C15(bad connection). Formed a population for each component. Performed reliability and warranty cost analyses At the component level. At the subsystem level. At the system level. **They don'l trust the warranty cost analysis.** Reliability improvement. Among all the subsystems front \ulcorner subsystem is most vulnerable (among other things due to the large number of components in it), especially components 39*** and 28***.

  • PDF

Six Sigma and Reliability (6시그마와 신뢰성의 역할)

  • 김환중
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.65-78
    • /
    • 2001
  • Recently, Six Sigma to increase market share , decrease costs, and grow profit margin has been adopted by some leading companies in the world. Six Sigma is expected as the optimal movement to raise the quality level remarkably and to make enterprise culture and organization based on customer and market orientation. In this paper, we study on the idea of Six Sigma, the Internal and external success case, the reliability tools using in the Six Sigma, and the difference between the existing quality movement and Six Sigma. Also, we discuss the role of reliability In Six Sigma..

  • PDF

The Action of the Reliability Enhancement in Test and Evaluation of the Weapon Systems (무기체계 시험평가의 신뢰성 향상방안)

  • Park, Jong Wan
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.108-123
    • /
    • 2015
  • Test and Evaluation (T&E) have been verifying the level of it's technological skill and the needed operational status of the development weapons. If the overall spectrum of test and evaluation is fulfilled substantially in the production & deployment, the needed level of the weapon system will be enhanced and also the reliability status will become higher considerably. We can know currently these issues through the mass media and all kinds of the news regarding the defense industry and programs. And so this article have studied the method of enhancing reliability of the test and evaluation, the 6 variables were selected through the discussion of the professional group. The the test and evaluation group needs consistently the professional training systems. After DT&E, we have to the event to verify the technical level of the development systems. We have to take the high level of the kinds of the environmental test. Scientific methods like system engineering will be adapted in process of the test and evaluation. The number of suitable test prototype in the test and evaluation is analysed more systematically. And we need to establish the standardization of the test and evaluation. If 6 variables are well analysed and adapted in the working field, the reliability of the test and evaluation will be considerably, the defense industry will take the chance to develope the future-oriented.

Analysis of Probabilities of Failure and Partial Safety Factors of Armor Units on Tranding and Coastal Harbors (무역항 및 연안항 피복재의 파괴확률과 부분안전계수 해석)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.157-165
    • /
    • 2008
  • Level II AFDA and Level III MCS reliability models are applied to analyze the stability of armor units on trading and coastal harbors in Korea. Hudson's formula and Van der Meer's formula are used in this reliability analysis. Also, probability density functions of reliability index and probability of failure are derived by the additional analysis. In addition, the partial safety factors of all harbors related to armor units can be straightforwardly evaluated by the inverse-reliability method. The upper and lower limits and average level of partial safety factors can be statistically investigated with the results of all cases applied in this paper. Therefore, it may be possible to design armor units of new breakwaters including the uncertainty of random variable and target level by using the present results.

  • PDF

The Effect of Shape Parameters in Designing Reliability Qualification Test for Weibull lifetime distribution (와이불수명분포를 갖는 제품의 신뢰성인증시험에서 형상모수의 영향분석)

  • Kwon, Young-Il
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • In the fields of reliability application, the most commonly used test methods for reliability qualification are zero-failure acceptance tests since they require fewer test samples and less test time compared to other test methods that guarantee the same reliability with a given confidence level. Usually values of shape parameters are assumed to be known in designing reliability qualification tests for Weibull lifetime distribution. It is important to select correct values of shape parameters to guarantee the specified reliability with given confidence level exactly. The effect of using wrong values of shape parameters in designing reliability qualification test for products with Weibull lifetime distribution is examined and selecting proper values of shape parameters for conservative reliability qualification is discussed.