• Title/Summary/Keyword: Level ice resistance

Search Result 21, Processing Time 0.027 seconds

Further study on level ice resistance and channel resistance for an icebreaking vessel

  • Hu, Jian;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.169-176
    • /
    • 2016
  • In this paper, further research is carried out to investigate the resistance encountered by an icebreaking vessel travelling through level ice and channel ice at low speed range. The present paper focuses on experimental and calculated ice resistances by some empirical formulas in both level ice and channel ice. In order to achieve the research, extra model tests have been done in an ice basin. Based on the measurements from model test, it is found that there exists a relationship between ice resistance, minimum ice load, maximum ice load and the standard deviation of ice load for head on operation in level ice. In addition, both level ice resistance and channel ice resistance are calculated and compared with model test results.

북극항로 운항 선박의 빙해역 운항 속도 추정에 관한 연구

  • Kim, Hyeon-Su;Han, Dong-Hwa;Ozden, Ali Erinc
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.177-180
    • /
    • 2018
  • As ships operating on the Arctic route are exposed to various ice environments such as level ice, pre-swan, pack ice, ice ridge and brash ice, it is essential to estimate the ice resistance according to the ice environment. Methods for estimating the ice resistance include a method using mathematical model, numerical simulation, and a method using empirical formula. In this study, empirical formulas are used to estimate the ice resistance. The purpose of this study is to develop the ice resistance and attainable speed estimation program(I-RES) for various ice environments.

  • PDF

A Study on the Simulation of the Ship in Level Ice (평탄방에서 선박의 모의실험에 관한 연구)

  • 박명규;고상용
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.23-31
    • /
    • 1994
  • A theoretical scaling was made in order to acquire the ice resistance of ships in level ice. Ice resistance of ice-breaker Ermak was calculated by Kashteljan eequation and it's model test results were compared with full-scale measurements. Atkins's ice number and Norman Jones's dimensionless numbers were investigated and discussed.

  • PDF

Prediction of ship resistance in level ice based on empirical approach

  • Jeong, Seong-Yeob;Choi, Kyungsik;Kang, Kuk-Jin;Ha, Jung-Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.613-623
    • /
    • 2017
  • A semi-empirical model to predict ship resistance in level ice based on Lindqvist's model is presented. This model assumes that contact between the ship and the ice is a case of symmetrical collision, and two contact cases are considered. Submersion force is calculated via Lindqvist's formula, and the crushing and breaking forces are determined by a concept of energy consideration during ship and ice impact. The effect of the contact coefficient is analyzed in the ice resistance prediction. To validate this model, the predicted results are compared with model test data of USCGC Healy and icebreaker Araon, and full-scale data of the icebreaker KV Svalbard. A relatively good agreement is achieved. As a result, the presented model is recommended for preliminary total resistance prediction in advance of the evaluation of the icebreaking performance of vessels.

Experimental and numerical study on ice resistance for icebreaking vessels

  • Hu, Jian;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.626-639
    • /
    • 2015
  • Ice resistance is defined as the time average of all longitudinal forces due to ice acting on the ship. Estimation of ship's resistance in ice-covered waters is very important to both designers and shipbuilders since it is closely related to propulsion of a ship and it determines the engine power of the ship. Good ice performance requires ice resistance should be as low as possible to allow different manoeuvres. In this paper, different numerical methods are presented to calculate ice resistance, including semi-analytical method and empirical methods. A model test of an icebreaking vessel that was done in an ice basin has been introduced for going straight ahead in level ice at low speed. Then the comparison between model test results and numerical results are made. Some discussions and suggestions are presented as well to provide an insight into icebreaking vessel design at early stage.

A Study of Ship Resistance Characteristics for Ice-strengthened Vessel by Broken Ice Channel Width and Size of Broken Ice Pieces (깨진 빙 채널 폭과 빙편 크기에 따른 내빙선박의 저항 특성 연구)

  • Jeong, Seong-Yeob;Jang, Jinho;Kim, Cheol-Hee;Yum, Jong-Gil;Kang, Kuk-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • Ships strengthened for navigation in ice encounter level ice, ice ridge and broken ice fields. Thus, the ship resistance in ice is a very critical concern to the designers of ice-going vessels. The objective of this study is to understand the physical aspects of ship performance in ice and to investigate the characteristics of the ship resistance in broken ice channels. In particular, this study identifies the ship resistance in ice associated with the broken ice channel width and the size of broken ice pieces. Model testings of towed-resistance condition in broken ice channels with three ship speeds were conducted in KRISO ice model basin. The influence of the ship resistance characteristics in broken ice channels for channel width and size of broken ice pieces was analyzed.

Change of Ice Resistance of Ice-Breaking Tanker According to Frictional Coefficient (빙마찰계수에 따른 쇄빙탱커의 빙저항 변화)

  • Cho, Seong-Rak;Lee, Sungsu;Lee, Yong-Chul;Yum, Jong-Gil;Jang, Jinho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.175-181
    • /
    • 2021
  • This study describes the model tests in ice according to the frictional coefficient of an ice-breaking ship and the change in ice resistance by the analysis method for each component of ice resistances. The target vessel is a 90K DWT ice-breaking tanker capable of operating in ARC7 ice conditions in the Arctic Ocean, and twin POD propellers are fitted. The hull was specially painted with four different frictional coefficients on the same ship model. The total ice resistance can be separated by ice breaking, ice buoyancy, ice clearing resistances through the tests in level ice, pre-sawn ice and creep test in pre-sawn ice under sea ice thickness of 1.2 m and 1.7 m. Ice resistance was analyzed by correcting the thickness and bending strength of model ice by the ITTC correction method. As the frictional coefficient between the hull and ice increases, ice buoyancy and clearing resistances increase significantly. When the surface of the hull is rough, it is considered that the broken ice pieces do not slip easily to the side, resulting in an increase in ice buoyancy resistance. Also, the frictional coefficient was found to have a great influence on the ice clearing resistance as the ice thickness became thicker.

An Estimation of Attainable Speed in Brash Ice using Empirical Formula (경험식을 이용한 유빙 얼음에서의 도달 속도 추정)

  • Kim, Hyun soo;Han, Donghwa;Lee, Jae-Bin;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • As ships operating on the Arctic route are exposed to various ice environments such as level ice, pre-swan, pack ice, ice ridge and brash ice, it is essential to estimate the ice resistance according to the ice environment. Methods for estimating the ice resistance include a method using mathematical model, numerical simulation, and a method using empirical formula. In this study, empirical formulas are used to estimate the ice resistance. The purpose of this study is to develop the ice resistance and attainable speed estimation program(I-RES) for brash ice. To develop the Brash ice attainable speed estimation algorithm, the environmental characteristics of the brash ice were analyzed, and the results of I-RES were evaluated by comparing the model test results of brash ice. The accuracy of I-RES for brash ice is around 20% in this study but it will be more developed near future with accumulating more model test results and calculation results.

Comparison Study on the Resistance Characteristics of an Arctic Tanker and a General Tanker (쇄빙 유조선과 일반 유조선의 저항특성 비교연구)

  • Kim, Hyun-Soo;Ha, Mun-Keun;Ahn, Dang;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.43-49
    • /
    • 2006
  • The hull form of icebreaking tanker depends on the trade route and ice characteristic. The hull form has to be designed for icebreaking concept if the vessel is operating in heavy ice and also the hull from has to be optimized for general tanker when the ship is operating in ice-free ocean. This paper presents comparison of ship resistance in pack ice, level ice and open water. Four ships are used to compare the resistance characteristic. One is conventional tanker and three ships are icebreaking tankers. The ice model test was carried out at the IOT (Institute for Ocean Technology, Newfoundland, Canada) and open water test was performed at 55MB (Samsung Ship Model Basin). The ice resistance of conventional tanker was predicted by Colbourne's method. The resistance of open water, pack ice and level ice are compared and discussed. The best hull form of icebreaker is not good in open water performance compare to conventional tanker. This result explains that the hull form of icebreaker and normal tanker have to compromise when the ship is operated in ice and ice-free condition. The result of this paper gives a guide for icebreaking tanker design.

Calculation of ice clearing resistance using normal vector of hull form and direct calculation of buoyancy force under the hull

  • Park, Kyung-Duk;Kim, Moon-Chan;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.699-707
    • /
    • 2015
  • The ice-resistance estimation technique for icebreaking ships had been studied intensively over recent years to meet the needs of designing Arctic vessels. Before testing in the ice model basin, the estimation of a ship's ice resistance with high reliability is very important to decide the delivered power necessary for level ice operation. The main idea of previous studies came from several empirical formulas, such as Poznyak and Ionov (1981), Enkvist (1972) and Shimansky (1938) methods, in which ice resistance components such as icebreaking, buoyancy and clearing resistances were represented by the integral equations along the Design Load Water Line (DLWL). The current study proposes a few modified methods not only considering the DLWL shape, but also the hull shape under the DLWL. In the proposed methodology, the DLWL shape for icebreaking resistance and the hull shape under the DLWL for buoyancy and clearing resistances can be directly considered in the calculation. Especially, when calculating clearing resistance, the flow pattern of ice particles under the DLWL of ship is assumed to be in accordance with the ice flow observed during ice model testing. This paper also deals with application examples for a few ship designs and its ice model testing programs at the AARC ice model basin. From the comparison of results of the model test and the estimation, the reliability of this estimation technique has been discussed.