• Title/Summary/Keyword: Levee vegetation

Search Result 31, Processing Time 0.028 seconds

Comparative Analysis of Filtering Techniques for Vegetation Points Removal from Photogrammetric Point Clouds at the Stream Levee (하천 제방의 영상 점군에서 식생 점 제거 필터링 기법 비교 분석)

  • Park, Heeseong;Lee, Du Han
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.233-244
    • /
    • 2021
  • This study investigated the application of terrestrial light detection and ranging (LiDAR) to inspect the defects of the vegetated levee. The accuracy of vegetation filtering techniques was compared by applying filtering techniques on photogrammetric point clouds of a vegetated levee generated by terrestrial LiDAR. Representative 10 vegetation filters such as CIVE, ExG, ExGR, ExR, MExG, NGRDI, VEG, VVI, ATIN, and ISL were applied to point cloud data of the Imjin River levee. The accuracy order of the 10 techniques based on the results was ISL, ATIN, ExR, NGRDI, ExGR, ExG, MExG, VVI, VEG, and CIVE. Color filters show certain limitations in the classification of vegetation and ground and classify grass flower image as ground. Morphological filters show a high accuracy of the classification, but they classify rocks as vegetation. Overall, morphological filters are superior to color filters; however, they take 10 times more computation time. For the improvement of the vegetation removal, combined filters of color and morphology should be studied.

Phytosociological Classification of vegetation in paddy levee (논둑 식생의 식물사회학적 군락분류)

  • Oh, Young-Ju;Sohn, Soo-In;Kim, Chang-Seok;Kim, Byoung-Woo;Kang, Byeung-Hoa
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.413-420
    • /
    • 2008
  • The phytosociological study was carried out to investigate the structural characteristics of paddy levee vegetation in South Korea. The vegetation data of total 59 releves were analyzed by the Zurich-Montpellier school's method. 6 syntaxa (3 associations and 3 communities) of paddy levee were recognized : Echinochlo-Digitaretum ciliaris ass. nov. hoc., Artemisia princeps-Erigeron annus community, Imperata cylindrica v. koenigii community, Glycine soja-Humulus scandens community, Miscantheum sinensis f. purpurascens ass. nov. hoc,, Polygonetum thunbergii Lohm. et Miyawaki 1962. Detrended correspondence analysis(DCA) showed that Artemisia princeps-Erigeron annus community and Imperata cylindrica v. koenigii community were positively correlated with soil hardness. Polygonetum thunbergii Lohm. et association and Miscantheum sinensis f. purpurascens ass. nov. hoc. was intimately correlated with high soil total nitrogen.

Comparison of the Floodplain Vegetation Structure According to Existence of Lateral Connectivity in Streams (하천의 횡적 연결성 유무에 따른 홍수터 식생 구조의 비교)

  • Chu, Yunsoo;Jin, Seung-Nam;Cho, Hyunsuk;Cho, Kang-Hyun
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • The flood pulse in streams enhances the biodiversity and ecosystem services of the channel-floodplain ecosystems by exchanging water, nutrients, sediments and organisms. However, the lateral connectivity in most streams of Korea has been disrupted by the levee constructions for the purpose of flood control and land use of floodplains. To compare the characteristics of floodplain vegetation according to existence of lateral connectivity in streams, we investigated the geomorphological and soil environmental factors and structures and distribution of vegetation in the floodplains connected and isolated by levee to the channel in Cheongmi Stream, Seom River, Hwangguji Stream, Mangyeong River, Gomakwon Stream, and Boseong River, Korea. In comparison of soil environments, moisture and clay contents were higher in the isolated floodplain than in the connected floodplain. According to the result of principal component analysis (PCA) using environmental data, the environments of the connected floodplain and the isolated floodplain were separated by soil moisture contents, soil texture and distribution altitude of the vegetation. The results of detrended correspondence analysis (DCA) using vegetation data showed that the isolated floodplain was dominated by the hydropythic communities of diverse life form and that the connected floodplain was dominated by the hygrophytic communities that endure disturbance. In conclusion, it is thought that the vegetation of the floodplain changed to the lentic wetland vegetation dominated by diverse hydrophytes as the floodplain was isolated from the channel by artificial levees.

Conveyance Analysis of Downstream of the Soyang Reservoir Considering the Influence of Vegetation (소양강 댐 직하류 하천의 식생 영향에 의한 통수능 분석)

  • Noh, Joonwoo;Shin, Hyunho;Kim, Hojoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.533-540
    • /
    • 2010
  • Recently management of vegetation distributed in the watercourse is very important not only for safety but also for river restoration. In general, vegetations in the watercourse increase hydraulic resistance and accordingly decrease conveyance capacity which may yield levee overflow. This paper simulates water level rise using 1D and 2D hydro dynamic model to check the possibility of overflow in downstream of the Soyang Reservoir by assigning different roughness coefficient corresponding to different types of vegetation. In this study, 3 different vegetation types of tree, shrub, and main channel were considered and corresponding Manning's roughness coefficient n was assigned based on the vegetation map generated from the site investigation. As results, the water level raised about 0.1 to 0.7 m comparing with the case without considering vegetation and a proper measurements is necessary where overflow occurs due to low level levee.

Evaluation of critical tractive forces of vegetation mats enhanced with biopolymer mixed soil (바이오폴리머 혼합토와 결합된 식생매트의 한계 소류력 평가)

  • Lee, Du Han;Kim, Myounghwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, new levee material has been developed to enhance natural soil strength and vegetation growth using biopolymer. In the study, critical tractive force of vegetated mats mixed with biopolymer mixed soil has been evaluated to apply the mixed soil to levee construction material. The mixed soil has been produced by mixing beta-glucan, clay, and sand. Full scale test bodies have been constructed with 3 cm thick of the mixed soil. Total 4 test bodies have been constructed and experimented. Critical tractive forces have been evaluated by observation and measurement of failure conditions and soil loss. Although performance of the vegetated revetments are affected by vegetation coverage conditions, the critical tractive forces are shown about 40 N/㎡ and the critical velocities are shown about 4 m/sec by full scale experiment. Erosion resistance is also enhanced by combination of root and net with mat materials.

Utilizing Concept of Vegetation Freeboard Equivalence in River Restoration

  • Lee, Jong-Seok;Julien, Pierre Y.
    • International Journal of Contents
    • /
    • v.8 no.3
    • /
    • pp.34-41
    • /
    • 2012
  • The concept of vegetation freeboard equivalence (VFE) is presented from the comparison between the rise in stage with/without vegetation and the freeboard height under design discharge conditions. In South Korea, the freeboard height of large, medium and small rivers is defined as a function of river discharge. Two models are used for this analysis of flood stage with and without vegetation: the 1-D model HEC-RAS and the 2-D model RMA-2. Both models are applied to three river study sites of the Geum River in South Korea as representative sites for a large, a medium and a small river. The analysis shows that without vegetation, both models provide comparable results and the calculated results are in very good agreement with the design configuration. The vegetation effects on the medium river are less significant, and the freeboard is adequate to contain the rise in stage from the added floodplain vegetation in large rivers. The concept of vegetation freeboard equivalence is therefore useful for the analysis of flood river stages after the restoration of channels with increased floodplain vegetation.

Analyses of Shear Stress and Erosion Characteristic in a Vegetated Levee Revetment with Root Fiber Quantity (근모량에 따른 식생호안의 전단강도와 침식특성 분석)

  • Choi, Heung Sik;Lee, Woong Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This study analyzed shear stress and erosion characteristic of a vegetated levee embankment with root fiber quantity, which is an important factor for evaluating the stability of it. The averaged root fiber quantity in a vegetated levee revetment was measured by the sampler manufactured by this research. The Phragmites Japonica Steud which is somewhat dominant species in a vegetated levee embankment was selected as an experimental vegetation. As a result of experiment of each flow regime, the shear stress was increased while root fiber quantity was increased and the erosion rate was exponentially decreased as the root fiber quantity was increased. The erosion rate was exponentially decreased as the shear stress was increased which is shown that the increase of shear stress by root fiber quantity results in the increase of erosion resistance in a vegetated soil. The relationship between shear stress and erosion rate with root fiber quantity were analyzed and their regression equations were suggested with high determination coefficients. The hydraulic stability is governed by the increase of shear stress by root fiber quantity and the Froude number of flow characteristic in a vegetated levee revetment.

Application of 3D point cloud modeling for performance analysis of reinforced levee with biopolymer (3차원 포인트 클라우드 모델링 기법을 활용한 바이오폴리머 기반 제방 보강공법의 성능 평가)

  • Ko, Dongwoo;Kang, Joongu;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.181-190
    • /
    • 2021
  • In this study, a large-scale levee breach experiment from lateral overflow was conducted to verify the effect of the new reinforcement method applied to the levee's surface. The new method could prevent levee failure and minimize damage caused by overflow in rivers. The levee was designed at the height of 2.5 m, a length of 12 m, and a slope of 1:2. A new material mixed with biopolymer powder, water, weathered granite, and loess in an appropriate ratio was sprayed on the levee body's surface at a thickness of about 5 cm, and vegetation recruitment was also monitored. At the Andong River Experiment Center, a flow (4 ㎥/s) was introduced from the upstream of the A3 channel to induce the lateral overflow. The change of lateral overflow was measured using an acoustic doppler current profiler in the upstream and downstream. Additionally, cameras and drones were used to analyze the process of the levee breach. Also, a new method using 3D point cloud for calculating the surface loss rate of the levee over time was suggested to evaluate the performance of the levee reinforcement method. It was compared to existing method based on image analysis and the result was reasonable. The proposed 3D point cloud methodology could be a solution for evaluating the performance of levee reinforcement methods.

The Spatial Characteristics of Vertical Accretion Rate in a Coastal Wetland - In case of Sunchon bay estuarine marsh, south coast of Korea - (해안습지 성장률의 공간적 특성에 관한 연구 - 순천만 염하구 해안습지를 사례로 -)

  • Park, Eui-Joon
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.153-168
    • /
    • 2000
  • An estuarine marsh is semi -inclosed inlets, located between coastal and terrestrial environment. The sediment transport by river and tide through tidal river and vertical accretion by sediment accumulation are important processes in estuarine marsh. An analysis of the vertical accretion rate at various time scale is important work for understanding and managing coastal environments. The purpose of this study is to determin the spatial characteristics of vertical accretion rate in an estuarine marsh, Sunchon Bay, in the southern coastal region of Korean peninsula. The methods of analysis are sedimentation rate by individual tidal cycle, annual accretion rate, concentration of total suspended load in water column. Spatial characteristics of sedimentation rate by individual tidal cycle was investigated using 30 filter paper traps. Sedimentation rate by individual tidal cycle at levee edge was higher than that at back marsh. The sedimentation rate decreased with distance from estuarine front. Levee effect and proximity to the turbidity maximum zone result in a higher sedimentation rate in the levee edge. There is a weak relation-ships between tidal regime and sedimentation rate by individual tidal cycle. Spatial cahracteristics of annual accretion rate was investigared using 30 artificial marker plots. Annual accretion rate at back marsh($1.5{\sim}3.5cm/yr$) was higher than that at tidal river levee edge($0.8{\sim}3.0cm/yr$). Total suspended load (TSL) concentrations in water column also indicate this spatial characteristics of annual accretion rate. TSL concentration in water column leaving the vegetation part dramatically decreased. There is a very strong relationship between the concentration of suspended load and accretion rate. These results indicate that annual accretion rate is controlled by vegetation cover and proximity to the turbidity maximum zone. This difference of spatial characteristics of vertical accretion rate ar various time-scale was due to the fact that surface sediment of levee edge was eroded by tide and other factors. The major findings are as follows. First, the spatial characteristics of vertical accretion rate are different from various time-scale. Second, the major mechanism for the vertical accretion rate in this region is suspended load trapping by vegetation. Third, this region is primarily a depositional regime over the time-scale of the present data Fourth, this estuarine marsh is accreting at rates beyond other area.

  • PDF

Present State and Conservation Counterplan for the Wetlands of the Tributaries around Namgang-River (남강 주변 습지의 보전 현황과 보전 대책)

  • Ha, Hye-Jeong;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.21-37
    • /
    • 2010
  • The abiotic factors and the vegetation naturalness of the 13 tributary wetlands around Namgang-River were assessed to investigate the present state and to present the conservation counter plan for the wetland ecosystem of the tributaries. Assessment indices for the abiotic factors were estimated based on the dominant land use types of the riparian zone, ecological function of the upper levee, levee slope structure, artificiality and utilization intensity of the waterfront, artificiality of the revetment structure, diversity of the substrate, and severance of the transverse. The assessment index of Omi-cheon is the highest among 13 tributaries. The second was Banseong-cheon and third was Hyangyang-cheon, followed by Nabul-cheon and Yeongcheon-gang and Sugok-cheon, Jungchon- cheon, and Daegok-cheon in their order and Munsan-cheon got the lowest assessment index. Assessment indices for the vegetation naturalness were estimated based on the vegetation diversity, exotic species dominance, annual herb dominance, naturalness and peculiarity of the vegetation, and species diversity. The assessment index of Omi-cheon is the highest among 13 tributaries. The second was Sugok-cheon and third was Banseong-cheon, followed by Yeongcheon-gang, Jungchon- cheon, Jinae-cheon, Nabul-cheon, and Jisu-cheon in their order, and Yonga-cheon got the lowest assessment index. The grades of the stream naturalness were estimated based on the the naturalness indices for the abiotic factors and the vegetation naturalness. The grades of Omi-cheon is the highest among 13 tributaries as the grade I. Those of Banseong-cheon, Sugok-cheon, Yeongcheon-gang, Nabul-cheon and Jungchon-cheon, Hyangyang-cheon, Jinae-cheon, Jisu-cheon, Daegok-cheone, and Munsan-cheon and Doksan-cheon were grade II in their order, and Yonga-cheon got the lowest as the grade III. It was suggested that restoration of the simple and flat substrate, create the natural vegetation on the levee slope constructed with concrete or stone wall, and rehabilitation of the eco-bridge were demanded to improve the grades of the stream naturalness through the restoration of the tributaries for the diverse aquatic wildlife, high vegetation diversity and species diversity with the vegetation consisted of perennial herbs and trees.