• Title/Summary/Keyword: Leukemia Inhibitory Factor Receptor

Search Result 11, Processing Time 0.039 seconds

Leukemia inhibitory factor and its receptor: expression and regulation in the porcine endometrium throughout the estrous cycle and pregnancy

  • Yoo, Inkyu;Chae, Soogil;Han, Jisoo;Lee, Soohyung;Kim, Hyun Jong;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.192-200
    • /
    • 2019
  • Objective: Leukemia inhibitory factor (LIF) binds to a heterodimeric receptor composed of LIF receptor (LIFR) and glycoprotein 130 (GP130) to transmit signals into the cell. LIF plays an important role in reproduction by regulating immune response, decidualization, and implantation in several species. However, the expression of LIF and LIFR in the endometrium throughout the estrous cycle and pregnancy in pigs is not fully understood. Methods: We analyzed the expression of LIF and LIFR in the endometrium on days 0 (estrus), 3, 6, 9, 12, 15, and 18 of the estrous cycle, and days 12, 15, 30, 60, 90, and 114 of pregnancy, in conceptuses on days 12 and 15, and in chorioallantoic tissues on days 30, 60, 90, and 114 of pregnancy in pigs. We also determined the effects of estrogen and progesterone on the expression of LIF and LIFR in endometrial tissues. Results: The expression of LIF increased in the endometrium during the late diestrus phase of the estrous cycle and during mid- to late- pregnancy, while the expression of LIFR increased during early pregnancy. The expression of LIF was induced by increasing doses of estrogen, whereas the expression of LIFR was induced by increasing doses of progesterone. Conclusion: These results indicate that the expression of LIF and its receptor LIFR in the endometrium is regulated in a stage-specific manner during the estrous cycle and pregnancy, suggesting that LIF and its receptor signaling system may play critical roles in regulating endometrial function in pigs.

Expression and Efficient One-Step Chromatographic Purification of a Soluble Antagonist for Human Leukemia Inhibitory Factor Receptor in Escherichia coli

  • Kim, Eun-Yeong;Choi, Hee-Jung;Chung, Tae-Wook;Jang, Se Bok;Kim, Kibong;Ha, Ki-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1307-1314
    • /
    • 2015
  • Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine family, having pleiotropic actions such as maintaining stem cell pluripotency and enabling blastocyst implantation. Because the action of LIF is mediated by a ligand-receptor interaction with the LIF receptor (LIF-R), an antagonist for LIF-R has been developed to inhibit LIF-induced signaling. In this study, we present a novel method for the production and purification of an antagonist to human LIF-R (hLA). His-tagged hLA was expressed in E. coli, and simple purification methods without any endopeptidase cleavage were designed. In addition, we determined the optimal temperature conditions for enhancing the production of soluble hLA. Finally, the bioactivity of His-tagged hLA was examined using STAT3 phosphorylation and receptivity of human endometrial ECC-1 cells. Our strategy provides a rapid and efficient method to produce biologically active recombinant hLA.

Suppressive Effects of a Truncated Inhibitor K562 Protein-Derived Peptide on Two Pro-inflammatory Cytokines, IL-17 and TNF-α

  • Hwang, Jong Tae;Yu, Ji Won;Nam, Hee Jin;Song, Sun Kwang;Sung, Woo Yong;Kim, Yongae;Cho, Jang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1810-1818
    • /
    • 2020
  • Inhibitor K562 (IK) protein was first isolated from the culture medium of K562 cells, a leukemia cell line, and is an inhibitory regulator of interferon-γ-induced major histocompatibility complex class II expression. Recently, exogenous truncated IK (tIK) protein showed potential as a therapeutic agent for inflammation-related diseases. In this study, we designed a novel putative anti-inflammatory peptide derived from tIK protein based on homology modeling of the human interleukin-10 (hIL-10) structure, and investigated whether the peptide exerted inhibitory effects against pro-inflammatory cytokines such as IL-17 and tumor necrosis factor-α (TNF-α). The peptide contains key residues involved in binding hIL-10 to the IL-10 receptor, and exerted strong inhibitory effects on IL-17 (43.8%) and TNF-α (50.7%). In addition, we used circular dichroism spectroscopy to confirm that the peptide is usually present in a random coil configuration in aqueous solution. In terms of toxicity, the peptide was found to be biologically safe. The mechanisms by which the short peptide derived from human tIK protein exerts inhibitory effects against IL-17 and TNF-α should be explored further. We also evaluated the feasibility of using this novel peptide in skincare products.

GP130 cytokines and bone remodelling in health and disease

  • Sims, Natalie A.;Walsh, Nicole C.
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.513-523
    • /
    • 2010
  • Cytokines that bind to and signal through the gp130 co-receptor subunit include interleukin (IL)-6, IL-11, oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), and ciliary neutrophic factor (CNTF). Apart from contributing to inflammation, gp130 signalling cytokines also function in the maintenance of bone homeostasis. Expression of each of these cytokines and their ligand-specific receptors is observed in bone and joint cells, and bone-active hormones and inflammatory cytokines regulate their expression. gp130 signalling cytokines have been shown to regulate the differentiation and activity of osteoblasts, osteoclasts and chondrocytes. Furthermore, cytokine and receptor specific gene-knockout mouse models have identified distinct roles for each of these cytokines in regulating bone resorption, bone formation and bone growth. This review will discuss the current models of paracrine and endocrine actions of gp130-signalling cytokines in bone remodelling and growth, as well as their impact in pathologic bone remodelling evident in periodontal disease, rheumatoid arthritis, spondylarthropathies and osteoarthritis.

Anti-proliferative and Pro-apoptic Effects of Dan-Seon-Tang in Human Leukemia Cells (인체 혈구암세포에 대한 단선탕(丹仙湯) 추출물의 증식억제 및 세포사멸 유도에 관한 연구)

  • Kim, Seong-Hwan;Park, Sang-Eun;Hong, Sang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.565-583
    • /
    • 2011
  • Objectives : This study investigated the biochemical mechanisms of anti-proliferative and pro-apoptotic effects of the water extract of Dan-Seon-Tang (DST) in human leukemia U937 cells. Methods : U937 cells were exposed to DST and growth inhibition was measured by MTT assay. Results : Exposure of U937 cells to DST resulted in the growth inhibition in a concentration-dependent manner. This inhibitory effect was associated with morphological changes and apoptotic cell death such as formation of apoptotic bodies, increased populations of apoptotic-sub G1 phase and induction of DNA fragmentation. The induction of apoptotic cell death in U937 cells by DST was associated with up-regulation of death receptor 4 (DR4) and down-regulation of Bid, surviving and cellular inhibition of apoptosis protein-2 (cIAP-2) expression. DST treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant degradation of caspase-3 substrate proteins such as poly (ADP-ribose) polymerase (PARP), phospholipase (PLC)-${\gamma}1$, ${\beta}$-catenin and DNA fragmentation factor 45/inhibotor of caspase activated DNAse (DFF45/ICAD). Furthermore, apoptotic cell death by DST was significantly inhibited by caspase-3 specific inhibitor z-DEVD-fmk, demonstrating the important role of caspase-3. Conclusions : These findings suggest that herb prescription DST may be a potential chemotherapeutic agent for the control of human leukemia U937 cells; further study is needed to identify the active compounds.

Mouse Granulocyte-marcrophage Colony-stimulating Factor Enhances Viability of Porcine Embryos in Defined Culture Conditions

  • S. H Jun;X. S Cui;Kim, N. H
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.71-71
    • /
    • 2003
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifunctional cytokine that has been implicated in the regulation of pre-implantation embryo development across several species. The aim of this study was to determine the effects of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) on development of porcine parthenotes and nuclear transferred embryos, and on their expression of implantation-related genes. In the presence of bovine serum albumin, mGM-CSF did not increase the percentage of oocytes that developed to the blastocyst stage and at day 7 did not increase oocyte cell number. Addition of 10 mM GM-CSF to protein-free culture medium significantly increased the compaction and blastocoel formation of 1- to 2-cell parthenotes and cloned embryos developing in vitro. However, cell number was not increased when they were cultured in the presence of GM-CSF. Semi-quantitative reverse transcripts polymerase chain reaction (RT-PCR) revealed that mGM-CSF enhances mRNA expression of the leukemia inhibitory factor receptor, but does not influence interleukin-6 or sodium/glucose co-transporter protein gene expression in blastocyst stage parthenotes. These results suggest that mGM-CSF may enhance viability of porcine embryos developing in vitro in a defined culture medium.

  • PDF

Mechanism Study on Inhibition of Pregnancy by Root Barks of Paeonia suffruticosa (목단피에 의한 임신 저해의 분자적 기전에 대한 연구)

  • Choi, Hee Jung;Kim, Eun Young;Choi, Hee Jin;Park, Mi Ju;Chung, Tae Wook;Park, Seong Ha;Kim, So Yeon;Ha, Ki Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.5
    • /
    • pp.530-536
    • /
    • 2014
  • Root barks of Paeonia suffruticosa Andrews (PS) was reported as contraindicated drugs of pregnancy by many Korean medical classics. Recently, a major ingredient component of PS, paeonol was reported that has contraceptive effect on early pregnancy in rats. However, the accurate molecular mechanism is not clear. In this study, we showed that PS decreased the expression of receptor for leukemia inhibitory factor (LIFR) in human endometrial Ishikawa cells at non-toxic dose, although the expression of leukemia inhibitory factor (LIF) was increased by PS. In addition, PS inhibited the adhesion of human trophoblastic JAR cells onto Ishikawa cells. Given importance of LIF-LIFR signaling pathway in the process of embryo implantation, the decreased LIFR expression by PS will be a good explanation on the PS- or its ingredient compounds-induced contraception.

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition (생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1054-1065
    • /
    • 2010
  • SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.

Alteration of Gene Expressions in Human Endometrial Stromal Cells by Exogeneous FSH Treatments (난포자극호르몬이 인간의 자궁 기질세포의 유전자 발현 양상에 미치는 영향)

  • Choi, Hye-Won;Jun, Jin-Hyun;Lee, Hyoung-Song;Hong, In-Sun;Kang, Kyung-Sun;Koong, Mi-Kyoung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.217-223
    • /
    • 2004
  • Objective: To evaluate the effects of recombinant FSH (rFSH) and urinary FSH (uFSH) on the gene expressions of human endometrial stromal cells in vitro. Methods: Endometrial tissue was obtained from a pre-menopausal women undergoing hysterectomy. Primary endometrial stromal cells were isolated and in vitro cultured with FBS-free DMEM/F-12 containing 0, 10, 100, and 1, 000 mIU/ml of rFSH and uFSH for 48 hours, respectively. Total RNA was extracted from the cultured cells and subjected to real time RT-PCR for the quantitative analysis of progesterone receptor (PR), estrogen receptor $\alpha/\beta$ (ER-$\alpha/\beta$), cyclooxygenase 2 (Cox-2), leukemia inhibitory factor (LIF), homeobox A10-1 and -2 (HoxA10-1/-2). Results: Both hormone treatments slightly increased (< 3 folds) the expressions of PR, ER-$\beta$ and HoxA10-1/-2 gene. However, ER-$\alpha$ expression was increased up to five folds by treatments of both FSH for 48 hours. The LIF expression by the 10 mIU/ml of uFSH for 12 hours was significantly higher than that of rFSH (p<0.01). After 24 hours treatment of two kinds of hormones, the expression patterns of LIF were similar. The 100 and 1, 000 mIU/ml of rFSH induced significantly higher amount of Cox-2 expression than those of uFSH, respectively (p<0.05). Conclusion: This study represents no adversely effect of exogeneous gonadotropins, rFSH and uFSH, on the expression of implantation related genes. We suggest that rFSH is applicable for the assisted reproductive technology without any concern on the endometrial receptivity.

Effect of GM-CSF on Porcine Parthenotes Development (GM-CSF가 돼지 처녀 생식 배아 발달에 미치는 영향)

  • Lee, Jae-Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.365-370
    • /
    • 2015
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic growth factor and immune modulator. The aim of this study was to evaluate the effects of GM-CSF on the development and cell number of porcine parthenotes, as well as on their expression of implantation-related genes. In the present study, porcine parthenogenatic activated embryos were cultured in a protein-free culture medium in the absence or presence of 5, 10 and 20 ng/ml GM-CSF for 7 days. The percentage of blastocyst formation, total cell number and gene expressions were evaluated. The results showed that the addition of 20 ng/ml GM-CSF to protein-free culture medium significantly increased the blastocoel formation ($26.14{\pm}2.03%$ vs. $3.55{\pm}0.51%$, p < 0.05). In addition, the cell number also increased when they were cultured in the presence of 20 ng/ml GM-CSF ($43.51{\pm}3.6%$ vs. $30.68{\pm}5.51%$, p < 0.05). A real time reverse transcripts polymerase chain reaction (RT-PCR) showed that GM-CSF enhances mRNA expression of the interleukin-6, but does not influence the leukemia inhibitory factor (LIF) receptor mRNA expression in blastocyst stage parthenotes. These results suggest that GM-CSF may enhance the viability of porcine embryos developing in vitro in a defined culture medium.