• Title/Summary/Keyword: Lenticular lens array

Search Result 18, Processing Time 0.029 seconds

A Color-Filterless LCD by using RGB LED array and lenticular lens array

  • Kwon, Jin-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.76-78
    • /
    • 2009
  • A liquid crystal display that does not use color filters is proposed. A backlight unit that employs compartmentalized RGB LED arrays and a lenticular lens array is used instead of the color filters in order to direct RGB LED lights into the RGB subpixels. A design of color-filterless LED backlight and experimental results are presented.

  • PDF

Liquid Crystal Lens Array with Thermally Controllable Focal Length and Electrically Convertible Lens Type

  • Heo, Kyong Chan;Kwon, Jin Hyuk;Gwag, Jin Seog
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.88-94
    • /
    • 2015
  • This paper reports the fabrication of a lenticular liquid crystal (LC) lens array with thermally tunable focus and with the function of a convertible lens type, using the surface structure of a UV-curable polymer and a twisted-nematic (TN) LC cell. The TN LC cell makes the LC lenticular lens function as a converging or diverging lens by controlling electrically the polarization of input light. Therefore, the focal lengths for both the converging and diverging lenses, which can be switched from the TN cell, can be tuned by changing the effective refractive index of the LC by Joule heating of the transparent electrode. As a result, the focal length of the lens with the E7 LC was changed continuously from 8.7 to 31.2 mm for the converging lens type and from -9.8 to -14.2 mm for the diverging lens when the temperature was increased from 25 to $56^{\circ}C$.

Auto-stereoscopic 60 view 3D using slanted Lenticular lens array

  • Im, Hee-Jin;Lee, Byung-Joo;Hong, Hyung-Ki;Shin, Hyun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1500-1503
    • /
    • 2007
  • Auto-stereoscopic 3D of 60-view number is made using slanted lenticular lens array and LCD of 15.1 inch diagonal size and 3200 by 2400 pixel numbers. Due to its large view number, smooth motion parallax is observed and the visual fatigue is reduced.

  • PDF

Color-Matching Liquid Crystal Display using a Lenticular Lens Array and RGB Light Sources

  • Jeon, Hwa Joon;Park, Gyeungju;Gwag, Jin Seog;Lee, Jong Hoon;Kwon, Jin Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.345-349
    • /
    • 2014
  • A direct-lit color-matching liquid crystal display using a lenticular lens array with grouped lens elements that image linear RGB light sources on the RGB subpixels of a color filter to enhance transmittance is designed, simulated, and fabricated. The RGB LED linear light sources were fabricated using small RGB LEDs in a linear array arrangement, and the lenticular lens array consisted of eight units of the same structure with a gap of 2.19 mm. The optical transmittance of the liquid crystal panel was improved by as much as 240% due to the color matching.

Optical Analysis for the Autostereoscopic Display with a Lenticular Array Using Finite Ray Tracing (유한광선추적을 이용한 렌티큘러 렌즈 기반 3차원 디스플레이 장치의 해석)

  • Kim, Bong-Sik;Kim, Keon-Woo;Choi, Da-Shin;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.162-166
    • /
    • 2014
  • We propose an analysis method of an autostereoscopic display system with lenticular lens array using finite ray-tracing method that is verified by the geometrical optics. In the present work, we adopt the cylinder equation for the mathematical expression of the lenticular lens. For the calculation of the direction cosine of the transmitted ray, we first calculate the refracting point at bottom of the lens and the direction cosine of the incident ray that propagating through the lens by the Snell's law, and then apply to finite ray-tracing method. Finally, we obtain the simulation results for the intensity distribution of the ray at optimal viewing distance. From these results, we confirm the realization of 3D image that exists separately according to the viewing position at an optimal viewing distance.

The Micro Lens Mold Processing in Mechanical Fabrication Method (기계적인 가공방법에 의한 마이크로 렌즈 금형가공)

  • 정재엽;이동주;제태진;최두선;이응숙;홍성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1885-1888
    • /
    • 2003
  • As high technology industries such as IT and display have developed, demand for application parts of micro lens and lens array has been extremely increasing. According to these trends, many researchers are studying on the fabrication technology for parts of the micro lens by a variety of methods such as MEMS, Lithography, LIGA and so on. In this paper, we have performed researches related to ultra precision micro lens, lens array mold and fabrication of Lenticular lens mold for three-dimensional display by using mechanical micro end-milling and fly-cutting fabrication method. Tools used in this research were a diamond tool of R 150$\mu\textrm{m}$. Cutting conditions set up feed rate, spindle revolution. depth of cut and dwell time as variables. And we analyzed surface quality variation of the processed products according to the cutting conditions, and then carried out experiments to search the optimum conditions. Through this research, we have confirmed that we can fabricate the ultra precision micro lens mold with surface roughness Ra=20nm and the holographic lens mold by using micro end-milling and fly-cutting fabrication method. Furthermore, we demonstrated problems happened in the fabrication of the micro lens and established the foundation of experimental study for formulating its improvement plan.

  • PDF

Optical Analysis for the 3D Display with a Lenticular Array (렌티큘러 렌즈 기반 3차원 디스플레이 장치의 광학적 해석방법)

  • Kim, Bong-Sik;Kim, Keon-Woo;Lee, Kil-Hoon;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.534-538
    • /
    • 2013
  • We propose a generic method to calculate the optical functionalities of a 3D display with a lenticular lens array. In the present work, based on the geometrical optics, it is designed considering the specifications of the display panel. For the effective simulation, we first calculate the optical functionalities of a single cylindrical lens and, by comparing with the results obtained from the conventional geometrical optics, confirm the validity of the present method. Afterwards, we obtain the full distribution of the light intensity at an optimum viewing distance by expanding the results of the single lens to the horizontal plane of the display panel. From these results, we finally confirm whether the 3D images are realized or not in the system.

Auto-Stereoscopic 60 View 3D using Slanted Lenticular Lens Arrays

  • Im, Hee-Jin;Lee, Byung-Joo;Hong, Hyung-Ki;Shin, Hyun-Ho
    • Journal of Information Display
    • /
    • v.8 no.4
    • /
    • pp.23-26
    • /
    • 2007
  • A natural 3D image is considered by many people to be next-step in evolution of displays. This paper introduces autostereoscopic 3D of 60-view number, which is made using slanted lenticular lens array and LCD of 15.1 inch diagonal size and 3200 by 2400 pixel numbers and presents the results of our prototype. Due to its large view number, smooth motion parallax is observed and the visual fatigue is reduced.

Design of a lenticular lens array module for stereoscopic vision application (입체영상을 위한 렌티큘러 렌즈 어레이 설계)

  • 김현영;박헌용;이은녕;조성민;심용식;이승걸;오범환;박세근;이일항
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.118-119
    • /
    • 2003
  • 조명각 변조방식에 의한 3차원 디스플레이 모듈의 구성요소는 back light unit(BLU), stripe-patterned LC shutter, lenticular lens sheet이다. 이런 3차원 디스플레이 에서 조명각도의 올바른 변조를 위해서는 stripe-patterned LC shutter, lenticular lens sheet 상호 결합이 가장 중요하다. 그림 1 은 이러한 입체영상 module의 개념도이다. 그림과 같이 LC shutter위에 적절한 렌티큘러 렌즈 어레이를 설치할 때, 줄무늬 모양의 면 광원에서 방출된 빛이 한번은 정확히 오른쪽 눈으로 다음 번에는 왼쪽 눈으로 향하게 하여 양안 시차에 의해 3D영상이 보이도록 하는 것이 이 모듈의 핵심원리이다. (중략)

  • PDF