• 제목/요약/키워드: Lens fabrication

검색결과 221건 처리시간 0.028초

기계적인 가공방법에 의한 마이크로 렌즈 금형가공 (The Micro Lens Mold Processing in Mechanical Fabrication Method)

  • 정재엽;이동주;제태진;최두선;이응숙;홍성민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1885-1888
    • /
    • 2003
  • As high technology industries such as IT and display have developed, demand for application parts of micro lens and lens array has been extremely increasing. According to these trends, many researchers are studying on the fabrication technology for parts of the micro lens by a variety of methods such as MEMS, Lithography, LIGA and so on. In this paper, we have performed researches related to ultra precision micro lens, lens array mold and fabrication of Lenticular lens mold for three-dimensional display by using mechanical micro end-milling and fly-cutting fabrication method. Tools used in this research were a diamond tool of R 150$\mu\textrm{m}$. Cutting conditions set up feed rate, spindle revolution. depth of cut and dwell time as variables. And we analyzed surface quality variation of the processed products according to the cutting conditions, and then carried out experiments to search the optimum conditions. Through this research, we have confirmed that we can fabricate the ultra precision micro lens mold with surface roughness Ra=20nm and the holographic lens mold by using micro end-milling and fly-cutting fabrication method. Furthermore, we demonstrated problems happened in the fabrication of the micro lens and established the foundation of experimental study for formulating its improvement plan.

  • PDF

등온압축성형공법을 이용한 폴리머 렌즈 성형 (Isothermal Compression Molding for a Polymer Optical Lens)

  • 오병도;권현성;김순옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.996-999
    • /
    • 2008
  • Aspheric polymer lens fabrication using isothermal compression molding is presented in this paper. Due to increasing definition of an image sensor, higher precision is required by a lens which can be used as a part of an imageforming optical module. Injection molding is a factory standard method for a polymer optical lens. But achievable precision using injection molding has a formidable limitation due to the machining of complex mold structure and melting and cooling down a polymer melt under high pressure condition during forming process. To overcome the precision requirement and limitation using injection molding method, isothermal compression molding is applied to fabrication of a polymer optical lens. The fabrication condition is determined by numerical simulations of temperature distribution and given material properties. Under the found condition, the lens having a high precision can successfully be reproduced and does not show birefringence which results often in optical degradation.

  • PDF

사진식각공정과 물방울 형틀을 이용한 PDMS 렌즈 제작 (Fabrication of PDMS Lens Using Photolithography and Water Droplet Mold)

  • 김진영;성중우;조성진;김철홍;임근배
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.352-356
    • /
    • 2013
  • We developed a novel fabrication method of polydimethylsioxane (PDMS) lens, which can easily control the shapes of the lens using soft lithography with common photolithography and water droplet molding. A mold for PDMS lens was prepared by patterning of hydrophobic photoresist on the hydrophilic substrate and dispensing small water droplets onto the predefined hydrophilic patterns. The size of patterns determined the dimension of the lens and the dispensed volume of the water droplet decided the radius of curvature of the PDMS lens independently. The water droplet with photoresist pattern played a robustly fixed mold for lens due to difference in wettability. The radius of curvature could be calculated theoretically because the water droplets could approximate spherical cap on the substrate. Finally, concave and convex PDMS lenses which could reduce or magnify optically were fabricated by curing of PDMS on the prepared mold. The measured radii of the fabricated PDMS lenses were well matched with the estimated values. We believe that our simple and efficient fabrication method can be adopted to PDMS microlens and extended to micro optical device, lab on a chip, and sensor technology.

리플로우 현상을 이용한 고 개구수를 갖는 비구면 렌즈 어레이의 제작에 관한 연구 (Study on Manufacturing Aspheric Lens Array with High NA using Reflow Phenomenon)

  • 김완진;이명복;손진승;박노철;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.644-647
    • /
    • 2003
  • Resulting from reproducibility and possibility of mass production. many researches to fabricate micro lens array using lithography have been developed. However, it still remains the level of fabricating compensation lens. Therefore, to realize the fabrication of lens having high numerical aperture can be the key technology of ultra slim optical system. Reflow phenomenon have been researched to make lens having high refractive power. And through those researches, the possibility to fabrication of high refractive power lens has been investigated. In this paper, we analyze the effect of many parameters in reflow process to get an aspheric shape with high repeatability. And we make possible to estimate shape error, through we give direct information about decrease in volume of photoresist.

  • PDF

SCS Micro-lens 패턴 적용 휴대폰 도광판 제작용 미세금형 제작에 대한 연구 (A Study on the Fabrication Method of Micro-Mold using 2.2inch LGP by the SCS Micro-Lens Pattern)

  • 오정길;김종선;윤경환;황철진
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.60-63
    • /
    • 2011
  • BLU(back light unit) is one of kernel parts of LCD(liquid crystal display) unit. New 3-D micro-lens pattern for LGP(light guide plate), one of the most important parts of LCD-BLU, had been researched. Instead of dot pattern made by chemical etching or laser ablation, SCS(slanted curved surface) micro-lens pattern was designed with optical CAE simulation. This study introduce the method of design using optical CAE simulation for SCS micro-lens, the new fabrication method of micro-mold with SCS micro-lens pattern.

엑사이머 레이저를 이용한 마이크로렌즈 제작 (Microlens Fabrication by Using Excimer Laser)

  • 김철세;김재도;윤경구
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Electroforming 공정을 이용한 마이크로 렌즈용 몰드 인서트의 제작 (Fabrication of Mold-insert for Micro-lens Using Electroforming Process)

  • 이남석;문수동;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.94-97
    • /
    • 2002
  • Micromolding methods are most suitable for mass production of plastic microlens and lens array with low cost. Among the procedures related with micromolding of microlens array, fabrication of mold insect which contains micro cavity of lens shape is the most important stage. In this study, nickel mold inserts for 45 $\mu\textrm{m}$ and 95 $\mu\textrm{m}$ diameters lens way were fabricated using electroforming process. The mother for metal mold inset was made using reflow method. A micro compression molding with polymer powders was used to test the qualities of the metal mold insets. Micro lens profile and surface roughness was measured by interferometric technique and AFM, respectively. The final molded lens replicated the mother well, and had good surface quality.

  • PDF

광 PCB 접속용 플러거블 렌즈의 설계 및 제작 연구 (A Study on the design and fabrication of Pluggable Lens for Optical PCB Interconnection)

  • 김정훈;이태호;김동민;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제21권1호
    • /
    • pp.25-29
    • /
    • 2014
  • 본 연구에서는 기존의 PCB의 한계를 극복할 수 있는 광 PCB에 대한 연구를 수행하였으며, 고효율 수동정렬을 위한 플러거블 렌즈구조를 제안하였다. 제안된 구조는 광 도파로 수동 정렬시 발생할 수 있는 렌즈와 도파로 간의 정렬 오차를 개선하고자 도파로와 렌즈를 합한 형태이다. 또한 탈착에 의해 손상되는 렌즈표면을 보호하기 위한 보호벽 형태를 지님으로써, 고효율의 수동정렬이 가능하게 하였다. 최적화 시뮬레이션을 통하여 구조를 설계하였고, 반복적 포토 리소그래피와 열적 리플로우 공정을 통하여 플러거블 렌즈 구조 제작을 위한 공정 연구를 수행하였다. 렌즈일체형 플러거블 접속구조의 광도파로를 PDMS복제공정으로 제작된 mold를 이용하여 임프린트 공정을 통해 제작하였다. 따라서 본 논문에서는 수동정렬이 가능한 광PCB접속용 플러거블 렌즈 구조의 제작이 가능함을 확인하였다.

그레이스케일 마스크를 이용한 미소렌즈 배열의 제작 (Fabrication of micro-lens arrays using a grayscale mask)

  • 조두진;성승훈
    • 한국광학회지
    • /
    • 제13권2호
    • /
    • pp.117-122
    • /
    • 2002
  • 홀로그래픽 필름으로 제작된 그레이스케일 마스크를 통하여 두꺼운 포토레지스트를 자외선으로 근접 노광하여 주기 300 $\mu\textrm{m}$, 두께 17 $\mu\textrm{m}$, 초점거리 2.2 mm인 10$\times$10 미소렌즈 배열을 제작하였다. 그레이스케일 마스크는 컴퓨터로 설계한 미소렌즈 배열을 필름 출력기를 이용하여 고해상도 흑백 필름에 그레이스케일로 기록 및 현상하고 이를 다시 홀로그래픽 필름에 축소복사(6.6배)하여 제작하였다. 본 제작방법은 저렴한 비용으로 100%에 가까운 fill-factor를 얻을 수 있고, 비구면 렌즈를 구현하기가 쉽다는 장점을 가진다.