DOI QR코드

DOI QR Code

A Study on the design and fabrication of Pluggable Lens for Optical PCB Interconnection

광 PCB 접속용 플러거블 렌즈의 설계 및 제작 연구

  • Kim, Jung Hoon (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Lee, Tae Ho (The Institute of Opto-Mechatronics, Pusan National University) ;
  • Kim, Dong Min (Samsung Electro-mechanics Co., Ltd.) ;
  • Jeong, Myung Yung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 김정훈 (부산대학교 인지메카트로닉스공학과) ;
  • 이태호 (부산대학교 광메카트로닉스연구소) ;
  • 김동민 (삼성전기) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2013.09.24
  • Accepted : 2014.03.25
  • Published : 2014.03.30

Abstract

In this study, an optical PCB was proposed which can overcome the limitations of the conventional PCB, and a new structure with pluggable lens was considered for a high-efficient passive alignment. The structure was a lens-added optical waveguide for the improvement of misalignment between the lens and the waveguide in the alignment. Also, as it had a barrier-type structure to prevent the surface damage of the lens by desorption, the high-efficient passive alignment can be realized. The structure was designed by optimizing the simulation and the fabrication process of the pluggable lens structure was conducted using the repetitive photolithography and the thermal reflow. The optical waveguide with the lens-integrated pluggable interconnection was fabricated by the imprint process using the polydimethylsiloxane(PDMS) replica mold. Therefore, we confirmed the possibility of pluggable lens-added optical waveguide structure fabrication for high-efficient passive alignment.

본 연구에서는 기존의 PCB의 한계를 극복할 수 있는 광 PCB에 대한 연구를 수행하였으며, 고효율 수동정렬을 위한 플러거블 렌즈구조를 제안하였다. 제안된 구조는 광 도파로 수동 정렬시 발생할 수 있는 렌즈와 도파로 간의 정렬 오차를 개선하고자 도파로와 렌즈를 합한 형태이다. 또한 탈착에 의해 손상되는 렌즈표면을 보호하기 위한 보호벽 형태를 지님으로써, 고효율의 수동정렬이 가능하게 하였다. 최적화 시뮬레이션을 통하여 구조를 설계하였고, 반복적 포토 리소그래피와 열적 리플로우 공정을 통하여 플러거블 렌즈 구조 제작을 위한 공정 연구를 수행하였다. 렌즈일체형 플러거블 접속구조의 광도파로를 PDMS복제공정으로 제작된 mold를 이용하여 임프린트 공정을 통해 제작하였다. 따라서 본 논문에서는 수동정렬이 가능한 광PCB접속용 플러거블 렌즈 구조의 제작이 가능함을 확인하였다.

Keywords

References

  1. M. H. Jeong, J. M. Kim, S. H. Yoo, C. W. Lee, and Y. B. Park, "Effect of PCB surface finishs on intermetallic compound growth kinetics of Sn-3.0Ag-0.5Cu solder bump", J. Microelectron. Packag. Soc., 17(1), 81 (2010).
  2. S. J. Ryu, "Comparison of PCB surface treatment effect usingUV equipment and atmospheric pressure plasma equipment", J. Microelectron. Packag. Soc., 16(3), 53 (2009).
  3. J. H. Ryu, D. M. Kim, E. S. Kim and M. Y. Jeong, "Optical PCB and Packaging Technology", J. Microelectron. Packag. Soc., 18(1), 7 (2011).
  4. S. H. Hwang, M. H. Cho, S. K. Kang, T. W. Lee, H. H. Park and B. S. Rho, "Two-Dimensional Optical Interconnection Based on Two-Layered Optical Printed Circuit Board", IEEE Photon. Technol. Lett., 19(6), 411 (2007). https://doi.org/10.1109/LPT.2007.892888
  5. I. Papakonstantinou, D. R. Selviah, R. Pitwon and D. Milward, "Low-Cost, Precision, Self-Alignment Technique for Coupling Laser and Photodiode Arrays to Polymer Waveguide Arrays on Multilayer PCBs", IEEE Trans. Adv. Packag., 31(3), 502 (2008). https://doi.org/10.1109/TADVP.2008.924243
  6. S. H. Ahn, I. K. Cho, B. H. Rhee and M. S. Lee, "Pluggable Optical Board Interconnection System With Flexible Polymeric Waveguide", IEEE Photon. Technol. Lett., 20(8), 572 (2008). https://doi.org/10.1109/LPT.2008.918876
  7. K. Nakama, Y. Matsuzawa, Y. Tokiwa and O. Mikami, "Boardto-Board Optical Plug-In Interconnection Using Optical Waveguide Plug and Micro Hole Array", IEEE Photon Technol. Lett., 23(24), 1881 (2011). https://doi.org/10.1109/LPT.2011.2170674
  8. D. M. Kim, T, K, Lee, T, H, Lee, M, Y, Jeong, "Design for High-Efficient passive Optical PCB Interconnection by Using Built-in Lens Structure", Journal of the Microelectronics & Packaging Society. Vol. 19, No. 2, p. 47-53 (2012). https://doi.org/10.6117/kmeps.2012.19.2.047
  9. S. Mihailov and S. Lazare, Fabrication of refractive microlens array by eximer laser ablation of amorphous Teflon. Appl Optics 32, 6211 (1993). https://doi.org/10.1364/AO.32.006211
  10. M. Kubo and M. Hanabusa, Fabrication of micro-lenses by laser chemical vapor deposition. Appl Optics 29 2755 (Jun, 1990). https://doi.org/10.1364/AO.29.002755
  11. M. B. Stern and T. R. Jay, Dry etching for coherent refractive microlens array. Opt Eng 33, 3547 (1994). https://doi.org/10.1117/12.179880
  12. D. L. MacFarlane, V. Narayan, W. R. Cox, T. Chen, and D. J. Hayes, Microjet fabrication of microlens array. IEEE Photonics Technology Letter 6, 1112 (1994). https://doi.org/10.1109/68.324684
  13. T. R. Jay, M. B. Stern, Preshaping Photoresist for Refractive Microlens Fabrication. Opt Eng 33, 3552 (1994). https://doi.org/10.1117/12.179887
  14. Y. Lin, C. Pan, K. Lin, S. Chen, J. Yang, and J. Yang, Polyimide as the pedestal of batch fabricated micro-ball lens and micro-mushroom array. Micro Electro Mechanical systems, 2001 The 14th IEEE International Conference, 337 (2001).
  15. H. Toshiyoshi, G. D. J. Su, J. LaCosse, M. C. Wu, A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process. J Lightwave Technol 21, 1700 (2003). https://doi.org/10.1109/JLT.2003.814399
  16. S. H. Kim, S. K. Hong, K. H. Lee and Y. H. Cho, "Shape Error and Its Compansation in the Fabrication of Microlens Array Using Photoresist Thermal Reflow Method", J. Microelectron. Packag. Soc., 20(2), 7 (2013). https://doi.org/10.6117/kmeps.2013.20.2.023