• Title/Summary/Keyword: Lens coating

Search Result 72, Processing Time 0.021 seconds

Changes of Thin Film Coating on Polymer Lenses with Varying Temperature (온도에 의한 고분자 렌즈의 재질별 코팅 박막의 변화)

  • Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: To observe changes of coatings and lens materials with varying temperature to understand effect of temperature on plastic lens. Methods: In this study, three lenses of different refractive indices (2 of thiourethane oriented lenses, an allyl diglycol carbonate oriented lens) were exposed to high temperature (50, 80, and 100 degree) for 5 hours and changes of individual coating (anti-refractive coating, hard coating, and water repellent coating) were measured. Results: As a result, high-refractive index lenses did not exhibit significant variation of hardness. However, hardness of mid-refractive index lens were decreased when exposed to high temperature and destructions of hard coating layer was inferred. Surface contact angles of lens were decreased with increasing temperature and water repellent coating layer were damaged at higher than 80 degree. Conclusions: Multi including water repellent coatings on all three lenses with different refractive indices were damaged when exposed to at or higher than 80 degree. The degree of changes in mechanical and physical properties were depended on polymer material type.

Improvement of Color Temperature Uniformity of Integrated Optic Lens Type LED Packaged using Compression Molding Method (가압성형 방식을 사용한 렌즈 일체형 LED 패키지의 색온도 균일성 향상에 관한 연구)

  • Kim, Wan-Ho;Kang, Young-Rae;Jang, Min-Suk;Joo, Jae-Young;Song, Sang-Bin;Kim, Jae-Pil;Yeo, In-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • Optical characteristics including the view angle and color temperature uniformity of LED packages with an integrated lens fabricated by compression molding method are investigated according to lens shape, lens materials, and phosphor coating methods. Four types of lens shape are designed and their optical output power dependence on the refractive index of silicone encapsulant are evaluated. Also, spatial color temperature uniformities of packages fabricated with different phosphor coating methods-direct coating on a chip vs. uniformly mixed with silicone encapsulant- are compared at various view angles. As the result, it is found that phosphor coating method is more effective on color temperature uniformity than lens shape. The maximum color temperature difference of a package with direct coating of phosphor on a chip is 1,340K according to the view angle at the color temperature of 5,000K, and that of a package with uniformly mixed phosphor is 250K, which indicates 1,090K improvement of color uniformity for the latter case.

A Research on DLC Thin Film Coating of a SiC Core for Aspheric Glass Lens Molding (비구면 유리렌즈 성형용 SiC 코어의 DLC 코팅에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.28-32
    • /
    • 2010
  • Technical demands for aspheric glass lens formed in market increases its application from simple camera lens module to fiber optics connection module in optical engineering. WC is often used as a metal core of the aspheric glass lens, but the long life time is issued because it fabricated in high temperature and high pressure environment. High hard thin film coating of lens core increases the core life time critically. Diamond Like Carbon(DLC) thin film coating shows very high hardness and low surface roughness, i.e. low friction between a glass lens and a metal core, and thus draw interests from an optical manufacturing industry. In addition, DLC thin film coating can removed by etching process and deposit the film again, which makes the core renewable. In this study, DLC films were deposited on the SiC ceramic core. The process variable in FVA(Filtered Vacuum Arc) method was the substrate bias-voltage. Deposited thin film was evaluated by raman spectroscopy, AFM and nano indenter and measured its crystal structure, surface roughness, and hardness. After applying optimum thin film condition, the life time and crystal structure transition of DLC thin film was monitored.

A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens (폴리머 안경렌즈의 반사방지 코팅효과 연구)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.216-221
    • /
    • 2017
  • Reducing optical reflection in the visible light range, in order to increase the share of transmitted light and avoid the formation of ghost images in imaging, is important for polymer lens applications. In this study, polymer lenses with refractive indices of n=1.56, 1.60, and 1.67 were fabricated by the injection-molding method with a polymer lens monomer, dibutyltin dichloride as the catalyst and an alkyl phosphoric ester as the release agent. To investigate their anti-reflection (AR) effects, various AR coating structures, viz. a multi-layer AR coating structure, tri-layer AR coating structure with a discrete approximation Gaussian gradient-index profile, and tri-layer AR coating structure with a quarter-wavelength approximation, were designed and coated on the polymer lens by an E-beam evaporation system. The optical properties of the polymer lenses were characterized by UV-visible spectrometry. The material properties of the thin films, refractive index and surface roughness, were analyzed by ellipsometry and AFM, respectively. The most effective AR coating structure of the polymer lens with low refractive index, n=1.56, was the both side coating of multi-layer AR coating structure. However, both side coating of the tri-layered discrete approximation Gaussian gradient-index profile AR coating structure gave comparable results to the both side coating of the multi-layer AR coating structure for the polymer lens with a high refractive index of n=1.67.

Changes of the Plastic Lens Properties Caused by Etching of the Coating Films (코팅막 식각으로 인한 플라스틱 렌즈의 특성 변화)

  • Moon, Byeong-Yeon;Hwang, Ki Ju;Lee, Yoon Jeong;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Purpose: We investigated the changes of plastic lens after etching of coating films by comparing uncoated lens. Methods: CR-39, middle index and high index lenses of 0 (zero) diopter were etched at $80^{\circ}C$ and room temperature using a coating remover, and then changes of refractive power, transmittance and surface morphology were investigated. Results: There were no differences in refractive power and transmittance between uncoated and etched lenses. The etching rate was similar in both CR-39 and middle index lens, but in the case of high index lens, it was slower and less steady than the others. From the SEM observation of lens surface, etching damage was found out on the surface of etched lens. It was shown the least damage in middle index lens but the most damage in high index lens. Conclusions: If the etching of coating films is demanded on condition that the surface of ophthalmic lenses are not damaged, a using of most adequate coating remover based on lens material should be considered, and a caution for proper etching conditions is required.

The Effect of Physical and Chemical Stimuli on Ophthalmic Lens Coatings (물리적, 화학적 자극이 안경 렌즈의 코팅에 미치는 영향)

  • Kim, So Ra;Kim, Ji Yoon;Kim, Ka Young;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.237-245
    • /
    • 2011
  • Purpose: The present study was conducted to investigate whether certain repeated physical and/or chemical stimuli added on ophthalmic lenses might induce any changes of the functions of lens coatings. Methods: The changes in lens surface, light transmittance, foggy duration, durability of ophthalmic lenses were determined after the application of tearing-off with tape, rubbing with acetone, soaking in acetone or distilled water of ophthalmic lens (CR-39 material) as physical and/or chemical stimuli. Results: The change of ophthalmic lens surface was detected after soaking in acetone for longer than 30 minutes by observing the lens surface to figure out the functional change of hard coating. The ophthalmic lens soaked in distilled water for 180 minutes showed little functional change of anti-reflection coating as 1% by measuring light transmittance of lens. However, the function of anti-reflection coating was almost disappeared after the ophthalmic lens was soaked in acetone for 60 minutes. The foggy duration of ophthalmic lens soaked in acetone was increased by estimating foggy duration of lens. The lens coating was shown to be defected when the pre-damaged ophthalmic lenses were torn off with tape, rubbed with acetone and soaked in distilled water or acetone by observing pre-damaged lens surface to evaluate its durability. Conclusions: The careful management during ophthalmic lens dispensing or usual eyeglass wearing is needed since the change in ophthalmic lens coatings was shown by repeated physical and/or chemical stimuli.

Comparison of Properties of Polymer Based Glass Lenses by Chemical Etching Reaction (고분자 안경 렌즈의 재질별 화학적 식각 반응성 비교)

  • Lee, Junghwa;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: To study changes in coating and lens materials after chemically etched different polymer based glass lenses in short-term and ambient condition using hydrofluoric acid. Methods: Vinyl ester polymer (Lens A) and thiourethane polymer (Lens B), both dyed in gray 70%, were etched in hydrofluoric acid solution for 5, 10, or 15 min. The mechanical properties, degrees of damages in hard coating, anti-reflection coating, and other coatings, rates of refractive index and light transmission of both polymer types were evaluated. Results: Rates of refractive index of both lens types were not changed significantly after chemical etching. However, anti-reflection coatings and hard coatings were removed and lens surfaces were damaged. As a results, UV light transmission of lenses increased and mechanical properties decreased. Chemical etching notably changed various properties of thiourethane polymer materials. Conclusions: Depending on types of polymer materials, chemical reactions by hydrofluoric acid were dissimilar. Thus, various properties of les materials were altered differently.

Uniformity estimation mathod and application of thin film in Coating lenses (Coating 렌즈에서 박막의 균일성 평가 방법 및 적용)

  • Kim, Yong Geun;Park, Sang-An
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.175-180
    • /
    • 2002
  • Use spctrophotometer to estimate thin film uniformity of lens, Compare, and analyze thin film uniformity availability selecting two peaks of Reflectance(R%) measuring on spectrum. Wavelength dependence's Reflectance in position of center, middle and edge of lens etc... obtain thin film's thickness (t) from Wavelength region (${\lambda}_1,{\lambda}_2$) of two peaks of Reflectance. $$t=\frac{1}{2(n^2-\sin^2{\theta})^{1/2}}{\times}\frac{{\lambda}_1{\lambda}_2}{{\lambda}_2-{\lambda}_1}$$ If Reflectance pattern is uniformity value in position of center middle of lens, edge etc... thin film has uniformity. Applied thin film uniformity estimation method to 1st layer $MgF_2$(n=1.38) coating lens. It was about thin film's thickness difference 360nm. Can analyze coating lens' thin film uniformity easily from Reflectance relationship measurement about Wavelength dependence.

  • PDF

Anti-reflection Coating using Optical Monitoring System (광학적 모니터링 장비를 이용한 안경렌즈의 무반사 코팅)

  • Jung, Boo-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.159-165
    • /
    • 2011
  • Purpose: In this paper, the reliability and reproductivity of anti-reflection (AR) coating on ophthalmic lens using optical monitoring system (OMS) were investigated. Methods: The random error simulation and RunSheet performance in Essential Macleod software to confirm possibility of AR coating using OMS were performed. The coating process of 19 batches was carried out in order to perform reproductivity test of AR coating after simulation process. Results: As a result, the coating results of 19 batches had shown the excellent reproductivity of about 0.5% error. Conclusions: We confirmed the excellent reproductivity and reliability of AR coating on ophthalmic lens using optical monitoring system from our results.