• Title/Summary/Keyword: Length of penetration

Search Result 344, Processing Time 0.032 seconds

A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test (수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구)

  • Lee, Seung-Hun;Chong, Song-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.29-38
    • /
    • 2022
  • The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear resistance. Previous studies confirmed direction-dependent shear resistance induced by interface between soil and surface asperity of plate inspired by geometrical shape of snake scale. The aim of this paper is to quantitatively evaluate interface friction angle with different surface asperities. Using the modified direct shear test, a total of 51 cases, which sand are prepared at the relative density of 40%, are conduced including 9 plates, two shear direction (shearing direction against the height of surface asperity is increased or decreased during shearing test), and three initial vertical stress (100 kPa, 200 kPa, 300 kPa). Experimental results show that shear stress is increased with higher height of surface asperity, shorter length of surface asperity, and the shearing direction that the height of surface asperity increases. Also, interface friction angle is decreased with larger surface asperity ratio, and shearing direction with increasing height of surface asperity produces larger interface friction angle regardless of the surface asperity ratio.

AN EXPERIMENTAL STUDY ON THE SEALING ABILITY OF A CALCIUM HYDROXIDE PLUG TREATED WITH DENTIN BONDING AGENT (상아질 결합제로 처리된 수산화칼슘 plug의 근단부 폐쇄능에 관한 연구)

  • Kim, Pyung-Sik;Hwang, Ho-Keel;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.187-201
    • /
    • 1996
  • The purpose of this study was to evaluate the sealing ability of a calcium hydroxide plug treated with a bonding agent. Ninety extracted human anterior teeth and premolars with single canal were used in this study. Crowns were removed. the canal's were instrumented. and the roots were randomly divided into three groups of 30 each. In control group. a single apical seat was prepared with #60 K file 1mm short of the apex and the root canal was obturated with Gutta-percha and Sealapex by the lateral condensation method. In experimental group 1 and group 2. to prepare an apical isthmus of 1mm in length. the first apical seat was prepared with a #45 K file 1mm short of the anatomical apex and with a #60 K file 2mm short for the second apical seat. Dry calcium hydroxide powders were packed in the apical isthmus with a hand plugger and #60 K file and then. the root canal was obturated with Gutta-percha and Seal apex by the lateral condensation method. In experimental group 2. following an application of the bonding agent to the plug. the root canal was obturated in the same way. The teeth of each group were immersed in a 2% methylene blue dye solution. for 1, 2, and 4 weeks. The distance from the tip of the cone to the deepest penetration was measured using the Tool maker's microscope. The results were as follows : 1. The teeth having the calcium hydroxide plug treated with the dentin bonding agent (experimental group 2) showed the lowest leakage with 1.4705mm and the control group without apical plug(no apical isthmus) showed the highest leakage with 3.1735mm. 2. The control group without apical plug showed higher leakage than experimental group 1 having the calcium hydroxide plug treated without the dentin bonding agent(p>0.05). 3. The control group without apical plug and experimental group 1, having the calcium hydroxide plug treated without the dentin bonding agent. showed higher leakage than experimental group 2. having the calcium hydroxide plug treated with the dentin bonding agent(p<0.001). 4. The immersion time had no significant effect on the degree of leakage. In conclusion, the results showed that the calcium hydroxide plug treated with the dentin bonding agent could decrease the microleakage from the root apex effectively.

  • PDF

Effect of Fluorine-Silicate Hybrid Based Crack Reducing Agent on the Resistance for Shrinkage Crack and Gas Permeability of Concrete (불소-실리카 복합형 균열저감제가 콘크리트의 수축균열 저항성 및 투기성에 미치는 영향)

  • Lee, Man-Ik;Park, Jong-Hwa;Nam, Jae-Hyun;Kim, Do-Su;Kim, Jae-On
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.631-637
    • /
    • 2006
  • In this study, fundamental properties such as fresh and hardened performance of concrete mix(specification : 25-24-18) added fluorine-silicate hybrid based crack reducing agent(FS) were measured. Addition of FS ranged from 0.5% to 2.0% at intervals 0.5% based on cement weight. Adequate dosage(0.5%) of FS derived from basic properties measurements applied and compared resistance for shrinkage crack. The permeability of concrete in the absence(24-S-0.0) and presence(24-S-0.5) of evaluated at a mock-up sized concrete. Concrete added FS improved resistance for shrinkage crack and consequently crack number, length and area decreased to $50{\sim}74.4%$ compared non-added. As well, by the addition of FS, the resistance for permeability and penetration depth to concrete surface region increased 67% and 40%, respectively. Therefore it was confirmed that shrinkage crack resistance and permeability of concrete could be improved by the addition of FS.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Variation of Soil Properties by Permeating Injection of Chemical Grouts (약액(藥液)의 침투주입(浸透注入)에 의한 토질성상변화(土質性狀變化))

  • Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 1982
  • Variation of soil properties is studied by permeating injection of chemical grouts, such as cement type, water-glass type and acrylamide type, to the same soil samples with different densities. Moreover, injection tests using specially prepared equipments of 1.0 shot system and 1. 5 shot system are attempted to investigate permeating injection effects in highly compacted soil and in the presence of ground water. The main factor which causes the improvement of cut-off effect and shearing strength is the cohesion of soil. The strength in the loose state is fundamentally governed by the membrane cohesion, meanwhile, in the loose state is governed by the structural cohesion. Injection effects under the ground water flow is considerably decreased, and effective gelling ratio of approximate 45~80% is observed by variation of velocity and gel time, besides grading of injection materials has high relation with permeation and traveling length but has little relation with effective gelling ratio. Permeating injection effects, such as gelling scope, gelling strength in highly compaoted soil conditions can be confirmed by penetration resistance diagram and iso-strength curve.

  • PDF

Migration and Distribution of Spargana in Body of Experimentally Infected Mice (실험감염 스파르가눔의 마우스체내 이행경로 및 분포)

  • 최원진
    • Parasites, Hosts and Diseases
    • /
    • v.22 no.2
    • /
    • pp.229-237
    • /
    • 1984
  • The migration and distribution pattern of spargana in mouse body was observed after experimental infection through mouth. The spargana were obtained from the snake, Natris tigrina lateralis, caught in Hoengseong-gun, Kangwon-do. A total of 28 male mice (ICR strain), 21∼259 in body weight, were fed each with 5 scolices (and necks) of spargana and killed after 10 minutes to 14 days. Systemic autopsy was performed on each mouse to recover the spargana. The results are as follows: 1. The spargana were found to penetrate into the stomach or duodenal wall of mice as early as 10 minutes after infection. They completed the penetration within 30 minutes and appeared in abdominal cavity. It was observed that spargana did not migrate tangentially along the gut wall but directly perforated the wall. 2. After 1 hour to 1 day the majority of spargana distributed in abdominal cavity of mice except a few which migrated to muscles or subcutaneous tissues. 3. It was within 7 days that nearly all of the spargana migrated to subcutaneous tissues. Out of total 28 in number found from subcutaneous tissues, 13 distributed around neck region, 12 around trunk and other 3 on head of mice and the most common sites were submandibular and subscapular areas. There was nearly no host tissue reaction to migrating spargana. 4. The initial length of spargana given was 4 mm in average but it increased to 12 mm after 7 days and to 35 mm after 14 days. The results suggest that spargana orally given to mice penetrate the gut wall within 30 minutes followed by escaping into abdominal cavity, and after passing through thoracic cavity or abdominal wall they anally Localize in subcutaneous tissues chieay around neck region within 7 days.

  • PDF

Study of Temperature Compensation method in Mini-Cones (소형 콘의 온도보상 기법 연구)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Cho, Se-Hyun;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.29-38
    • /
    • 2011
  • The smaller diameter cone penetrometer has been widely used to estimate the characteristics of local area due to high vertical resolution. The half-bridge cirucits have been adopted to measure the mechnical strength of soil through the smaller diameter cone penetrometer due to the limitation of the areas for configuring the full-bridge circuit. The half-bridge circuit, however, is known as being easily affected to the temperature variation. The objective of this study suggests the temperature-compensated method in mini-cones. The diameter and length of the mini-cone is designed to 15mm and 56mm. The load cell of the mini-cone is extended about 54mm on the behind of the mini-cone to reflect the only temperature variation. The full-bridge circuit is installed to measure the temperature-compensated values in the mini-cone and the half-bridge circuit is also organized to compare the temperature compensated values with uncompensated values. The seasonal variation tests are performed to define the effect of temperature variation under summer and winter temperature condition. The densification tests are also carried out to investigate temperature effects during penetration. The measured mechanical resistances with temperature-compensated method show more reliable and reasonable values than those measured by thermal uncompensated system. This study suggests that the temperature-compensated method of the mini-cone may be a useful technique to obtain the more reliable resistances with minimizing the temperature effect.

Effect of Biodegradable Film Mulching on Soil Environment and Onion Growth and Yield (생분해성 멀칭필름이 토양환경과 양파 생육 및 수량에 미치는 영향)

  • Ji-Sik Jung;Do-Won Park;Hyun-Sug Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.207-215
    • /
    • 2023
  • This study was compared the soil environment and growth and yield of onion (Allium cepa L.) treated with non-mulching (NM) and mulching polyethylene film (PEF) and two biodegradable films (BFI and BFII) commonly used in farmhouses. Visual observation confirmed the degradation of BFI and BFII films after 150 days after tansplanting (DAT). BFII increased light penetration into the films and reduced the weight maintenace after 180 DAT, with a high decompostion at 30 days after soil tilling. Soil moisture contents much fluctuated between -14 kP and - 0 kPa in NM plots, increasing the minimum soil temperature of BFI plots. Mulching treatments decreased soil organic matter contents but did not subtantially increase soil mineral nutrients, soil bulk density, and number of bacteria compared to those of NM plots. Onion root growth was increased by PEF and BFI treatments at an early growth stage, 60 DAT, with the most remarkable stem extension observed for PEF and BFI treatments after 150 DAT. PEF and BFI treatments increased the bulb's diameter, length, weight, and lodging at 180 DAT. BFI treatments exhibited a high portion of the "very large" category producing with 55.3 tons ha-1 based on the classification into bulb size, followed by PE (49.3 tons), NM (9.4 tons), and BFII treatments (2.7 tons) at 230 DAT.

CPFD Simulation of Bubble Flow in a Bubbling Fluidized Bed with Shroud Nozzle Distributor and Vertical Internal (CPFD 시뮬레이션을 통한 Shroud 노즐 및 수직 구조물이 설치된 기포 유동층 반응기 내에서의 기포 흐름 해석)

  • Lim, Jong Hun;Bae, Keon;Shin, Jea Ho;Lee, Dong Ho;Han, Joo Hee;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.678-686
    • /
    • 2016
  • The effect of internal and shroud nozzle distributor to bubbling fluidized beds which has the size of $0.3m-ID{\times}2.4m-high$ column was modeled by CPFD (Computational Particle-Fluid Dynamics). Metal-grade silicon particles (MG-Si) were used as bed materials which have $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$ and $U_{mf}=0.02m/s$. Total bed inventory and static bed height were 75 kg and 0.8 m, respectively. Effect of vertical internal on the bubble rising velocity was investigated. Bubbles were split by internal when the axial position of the internal from the distributor, z = 0.45 m. Bed pressure drop and axial solid holdup were not affected by internal. However, in the case that axial distance of internal from distributor was too close to jet penetration length, bubbles were not separated and bypassed internal, and faster than without internal or z = 0.45 m.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.