• Title/Summary/Keyword: Legged type

Search Result 32, Processing Time 0.034 seconds

A Development of 4-legged Walking Machine and the Enhancement of Static Stability Margin Using Balancing Weight (사각 보행 로보트의 제작 및 균형추를 이용한 안정성 향상에 관한 연구)

  • 강신천;오준호;정경민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.146-154
    • /
    • 1991
  • As the application of robotic systems expand its scope, more research efforts are given in providing mobility to the robotic systems so that they can travel across various paths including those with formidable obstacles such as stairways or rough terrains. Legged locomotion is mainly concerned because the walking motion, like that of animal behavior, has many advantages over wheel type or track type locomotion especially in rough terrain. Walking robot, in general, having a discrete number of legs, have inherently low static stability. Static stability can be increased to a certain degree, by improving walking method, but it has many limitations such as reduced travel speed. A very promising possibility lies in the use of balancing weight, nevertheless its actual implementation is very rare. In this study, a 4-legged walking machine is developed and the static stability margin is increased with the balancing weight. In the future, this robot will be used to take an experiment on the walking in mush terrain.

  • PDF

Effectiveness Analysis of Roundabout Based on the Operation of Pedestrian Signal (보행신호 운영에 따른 회전교차로의 효과 분석)

  • Kim, Kyung-Hwan;Park, Byung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • This study deals with the operation effectiveness of roundabout. The objective of this study was to analyze the operational effectiveness of roundabout based on the operation of pedestrian signal. For pursuing the above, VISSIM was as a traffic simulation program. this study gives particular attention to analyzing the 1,680 scenarios by operation of Pedestrian Signal(7 cases), roundabout type(2 cases), pedestrian volume(8 cases) and entering volume(15 cases). The main results analyzed are as follows. First, the operational effectiveness analyzed by 2 type of 4-legged 1-lane roundabout and 6 type of 4-legged 2-lane were evaluated to be better than that by the others type. Second, the average delay time analyzed by operation of pedestrian signal were evaluated to be less than that by unsignalized pedestrian crossing. Finally, the average delay time analyzed by pedestrian crossing were decreased 8.18% than that by staggered pedestrian crossing in 4-legged 1-lane. However, the average delay time analyzed by staggered pedestrian crossing were evaluated to be decreased 36.53% than that by pedestrian crossing in 4-legged 2-lane.

Design of Window Applicable Blind-type Frequency Selective Surface

  • Lee, In-Gon;Hong, Ic-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.682-685
    • /
    • 2014
  • In this paper, we presented the window applicable blind-type frequency selective surface to control the coverage area of wireless communication in secure building or conference room. The proposed frequency selective structure has the reconfigurable frequency range depends on its blind rotation angle. To verify the proposed structure, we fabricated the window blind-type frequency selective surface with four-legged loaded element and ring-type element as a unit cell and performed measurements of the transmission characteristics for different blind rotation angles to prove the feasibility. The measurement results show good agreements with the simulation results. One of the advantages is that the proposed structure does not need to have a bias circuit, so it is very easy to implement at low cost and also can be applied to any planar surface for wireless security applications.

A Method of Adaptive Leg-end Trajectory Control for a Five-legged Walking Robot

  • Tsunehon, Honda;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.83.3-83
    • /
    • 2001
  • A method to adaptively control leg-ends trajectories of a five-legged walking robot, Cepheus-2, has been developed in terms of a kind of a table look-up method. Cepheus-2 is a five-legged robot with a pentagonal body with two joints of each leg. The robot control system has a hierarchical autonomic-integrated architecture with a main computer (PC), a manager and servo modules. Being given the goals of walking by the main computer, the manager module assigns a type of leg-end trajectories of which data are described with the work space coordinates for the legs. Every servo module generates the joint angle data. In steady walking of the robot on flat floor without obstacle, two joints have to generate the assigned trajectory and five legs ...

  • PDF

Step-Type Obstacle Traversal Algorithm for Six Legged Mobile Robot (견마형 로봇의 계단형 장애물 극복 알고리즘 개발)

  • Shim, Hyung-Won;Lee, Ji-Hong;Kim, Jung-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • Mobile robots traveling on rough terrain need several algorithms to overcome obstacles. In this paper, we propose the step-type obstacle traversal algorithm to adapt the mobile robot with six arms and wheels to travel on rough terrain. Obstacle traversal is composed of two different stages: planning and control. In planning stage, the required joint torque of each arm as well as the interference between the wheels and the arms are analyzed to guarantee traversing obstacles. Control stage includes such steps as checking distance to obstacle, determining the height and length of obstacle, performing arm motion according to sensed torque data, and evaluating safety at every instance. The proposed algorithm is designed and implemented for CALEB 1 six legged robot developed in the laboratory and verified by simulation and experiment in outdoor environment.

  • PDF

Traffic Accident Models of Cheongju Four-Legged Signalized Intersections by Accident Type (사고유형에 따른 청주시 4지 신호교차로 교통사고모형)

  • Park, Byung-Ho;Han, Sang-Wook;Kim, Tae-Young;Kim, Won-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.153-162
    • /
    • 2008
  • This study deals with the traffic accidents at the 4-legged signalized intersections in Cheong-ju. The purpose is to comparatively analyze the characteristics and models by the accident type using the data of 143 intersections. In pursuing the above, this study gives particular emphasis to modeling such the accidents as head on collision, rear end collision, side swipe, side right angle collision, and others. The main results are the followings. First, the overdispersion tests show that the negative binomial regression models are appropriate to the traffic accident data in the above contexts. Second, five accident models are developed, which are all analyzed to be statistically significant. Finally, the models are comparatively evaluated using the common variable(ADT) and type-specific variables.

Legged Robot Trajectory Generation using Evolved Fuzzy Machine for IoT Environments (IoT 환경을 위한 진화된 퍼지머신을 이용한 로봇의 궤적생성)

  • Kim, Dong Won
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.59-65
    • /
    • 2020
  • The Internet of Things (IoT) era, in which all items used in daily life are equipped with a network connection function, and they are closely linked to increase the convenience of life and work, has opened wide. Robots also need to develop according to the IoT environment. A use of new type of evolved fuzzy machine (EFM) for generating legged robot trajectory in IoT enviornmentms is discussed in this paper. Fuzzy system has been widely used for describing nonlinear systems. In fuzzy system, determination of antecedent and consequent structures of fuzzy model has been one of the most important problems. EFM is described which carries out evolving antecedent and consequent structure of fuzzy system for legged robot. To generate the robot trajectory, parameters of each structure in the fuzzy system are tuned automatically by the EFM. The results demonstrate the performance of the proposed approach for the legged robot.

Comparative Analysis on the Delay of Rotary and Roundabout by Operational Type (로터리와 회전교차로 운영방식별 지체 비교분석)

  • Park, Byung-Ho;Kim, Kyung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • This study deals with the operational efficiency of roundabout. The roundabouts generally have such the merits as high capacity, delay reduction, safety improvement, and others. Circular intersection can be divided into the rotary and roundabout according to travelling priority. The objective of this study is to comparatively analyze the operational efficiency of rotary and roundabout by scenario. In pursuing the above, this study gives the particular attentions to developing 256 scenarios according to the directional and entering traffic volume and analyzing the delay using VISSIM. The main results are as follows. First, the average delay of rotary was analyzed to be 1.56-8.74 times of roundabout. Second, the operational efficiencies of rotary and roundabout were analyzed to be better in the case of bigger differences in the traffic volumes between the main and minor roads. Third, the average delay of the 4-legged was evaluated to be 1.77-11.70 times of 3-legged intersection. Finally, 2-lane intersection (3-legged & 4-legged) was analyzed to be 2.02-2.23 times of 1-lane intersection.

Development of wall climbing robot using vacuum adsorption with legged type movement (진공 흡착과 보행형 이동에 의한 벽면이동 로봇의 개발)

  • Park, Soo-Hyun;Seo, Kyeong-Jun;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.344-349
    • /
    • 2017
  • Wall-climbing robots have been developed for various purposes, such as cleaning skyscraper windows, maintaining large structures, and welding vessels. Conventional wall-climbing robots use movement systems based on wheels or legs. However, wheeled robots suffer from slipping effects, while legged systems require many actuators and control systems for the complex linkage structure, which also increases the weight of the robot. To overcome these disadvantages, we propose a new wall-climbing robot that walks based on gorilla locomotion. The proposed robot consists of a DC drive motor, a vacuum pump for adsorption, and a micro controller for controlling the system. The performance of the robot was experimentally verified on vertical and horizontal flat surfaces. The robot could be used for various functions in industrial sites or disaster areas.