• Title/Summary/Keyword: Leg Design

Search Result 551, Processing Time 0.038 seconds

Design Study of 3 Segment Leg with Stable Region at low and high Speed Running (저속 및 고속주행에서 안정영역을 갖는 3 Segment Leg 설계 연구)

  • Kwon, Oh-Seok;Lee, Dong-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.230-236
    • /
    • 2011
  • In previous researches, the self-stability was studied for the spring-mass model and the two segment leg model. In these researches, it was presented that the spring-mass model has the self-stable region at relatively high speed running and the two segment leg model has the self-stable region at relatively low speed running. If the model was run in the self-stable region, the cost of transport is zero ideally. That is, actually, only the energy loss is needed to compensate for running. This means that the energy efficiency is high, running in the self-stable region. We want to have high energy efficiency at low and high speed running. So, in this paper, we propose the design direction of the three segment leg having the self-stable region at low and high speed running. And we prove the self-stable region of the three segment leg designed by the proposed design direction.

Design of Robotic Prosthetic Leg for Above-knee Amputees (대퇴 절단자들을 위한 로봇 의지의 설계)

  • Yang, Un-Je;Kim, Jung-Yup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.913-922
    • /
    • 2014
  • This paper describes design of a robotic above-knee prosthetic leg which is powered by electrical motors. As a special feature, the robotic prosthetic leg has enough D.O.F.s. For mimicking the human leg, the robotic prosthetic leg is composed of five joints. Three of them are called 'active joint' which is driven by electrical motors. They are placed at the knee-pitch-axis, the ankle-pitch-axis, and the an! kle-roll-axis. Every 'active joint' has enough torque capacity to overcome ground reaction forces for walking and is backlashless for accurate motion generation and high-performance balance control. Other two joints are called 'passive joint' which is activating by torsion spring. They are placed at the toe part and designed by Crank-rocker mechanism using kinematic design approach. In order to verify working performance of the robotic prosthetic leg, we designed a gait trajectory through motion capture technique and experimentally applied it to the robot.

Analysis of Wearing Propensities, Wearing Comfort, Mobility of Movement, and 3D Shape for Advanced Baseball Leg Guards Design (야구 다리보호대 디자인을 위한 착용실태 및 착용감, 운동기능성, 3D 형태분석)

  • Lee, Hyojeong;Eom, Ran-I;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.1
    • /
    • pp.63-76
    • /
    • 2015
  • This study conducted a survey to gauge the buying and wearing propensities of wearers of leg guards made for baseball catchers, as well as product characteristics of preferred leg guards. Data from the survey were analyzed to obtain basic data for the development of an advanced leg guard design. Degree of compression, horizontal distance, cross section view and outline 3D sketch were also analyzed from the 3D data of leg guards; in addition, mobility and kinematic analysis were conducted through a wearing test. The survey indicated that imported products dominate the current retail market because they are appreciated by customers in terms of fit, price, brand, and protection. Representative complaints of products were discomfort, pressure, and the heavy-weight of the leg guards in general attributed to overall structure and 3D shape. When the pressure was lower on the front area of knee, it feels better to wear and the average knee angular velocity during the up and down motion increased, which suggests a better design from a kinematic point of view. The knee is the primary part of the body responsible for any movement of the lower limbs; consequently, the degree of compression and support stability of the leg guards near the knee area are important factors to evaluate the performance of leg guards. The results of our study indicate significant opportunities for improvement in product design and the development of baseball leg guards along with an ergonomic design that considers the mobility of the knee, skin deformations is necessary to improve performance. The process followed in this study will be applicable to studies on other personal protective equipment for sports.

Safety Enhanced Signal Phase Sequence Design of a Rotary with Five Leg Intersection (5지 신호교차로에서의 안전을 고려한 신호현시 설계)

  • 박재완;김진태;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.23-29
    • /
    • 2002
  • Five and more leg intersections have been still in operation in many urban areas. The number of conflicts in five leg intersection is more than four leg intersection. The signal timing design in the five leg intersection should be performed not only to reduce delay but also to increase safety. This paper suggests safety enhanced signal phase sequence design of a rotary with five leg intersection such as phase sequence minimizing the number of conflict points at the rotary with five leg intersections and the phase-length-design procedure by utilizing the Traffic Network Study Tool(TRANSYT). Field data was collected from Gonguptap five leg intersection in Ulsan and TRANSYT-7F was applied for signal timing design model. Optimal signal phase length and sequence of TRANSYT-7F is rearranged based on the Principal of "two moving traffic flows per phase". In conclusion, proposed signal phase design increased delay by 6.2% compared with the optimal signal phase of TRANSYT-7F. However, it could decrease the number of conflict in the five leg intersection by 61.5%.

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot (소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석)

  • Sojung Yim;Seongjun Lee;Sang-Min Baek;Seokhaeng Huh;Jaekwan Ryu;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

A Study on the Drafting Method of Korean Men's Traditional Trousers (한복바지 구성의 제도법에 대한 고찰)

  • 정욱임
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.4
    • /
    • pp.95-110
    • /
    • 1997
  • According to the design method for constructing the crotch angle of traditional Korean men's trousers there are differences in from after its completion. Since there is no standardization of visual & aesthetic pattern for the construction method which is stablished by the calculation formular of waist girth hip girth pantleg end and upper outer leg length it is difficult to be used for educational use or for teaching materials. Therefore the purpose of this project according to five models in proportion to the physical standard of Korea in ages from 24 to 29 years old is to establish a design criterion and the standardization of construction methods by introduction the pant construction method of the crotch angle by converting the sitting posture length to seaming crotch center point both knees width in the Korean way of sitting. The production method for the pattern design is as follow: (1) The waist girth formular is {{{{ { w} over {4 } }}}}+{{{{ {w} over {10 } }}}}(2) The hip girth formular is {{{{ {H } over { 4} }}}}+{{{{ {H } over {5 } }}}}(3) The pantleg end formular is {{{{ {H } over {4 } }}}}(4) A crotch angle is fixed at 70 degress.(5) The ratio of outer leg length to leg width is 5:8 (6) The component ratio of the upper outer leg length to the pant length in 5:8(7) The ratio of the division point of front / right inner leg length and left inner leg width to upper outer leg length is 5 : 8

  • PDF

Development of a Specialized Underwater Leg Convertible to a Manipulator for the Seabed Walking Robot CR200 (해저 보행 로봇 CR200을 위한 매니퓰레이터 기능을 갖는 다리 개발)

  • Kang, Hangoo;Shim, Hyungwon;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.709-717
    • /
    • 2013
  • This paper presents the development of a specialized underwater leg with a manipulator function(convertible-to-arm leg) for the seabed walking robot named CRABSTER200(CR200). The objective functions of the convertible-to-arm leg are to walk on the seabed and to work in underwater for precise seabed exploration and underwater tasks under coastal area with strong tidal current. In order to develop the leg, important design elements including the degree of freedom, dimensions, mass, motion range, joint structure/torque/angular-speed, pressure-resistance, watertight capability and cable protection are considered. The key elements of the convertible-to-arm leg are realized through concept/specific/mechanical design and implementation process with a suitable joint actuator/gear/controller selection procedure. In order to verify the performance of the manufactured convertible-to-arm leg, a 25bar pressure-resistant and watertight test using a high-pressure chamber and a joints operating test with posture control of the CR200 are performed. This paper describes the whole design, realization and verification process for implementation of the underwater convertible-to-arm leg.

Propeller Perforator Flaps in Distal Lower Leg: Evolution and Clinical Applications

  • Georgescu, Alexandru V.
    • Archives of Plastic Surgery
    • /
    • v.39 no.2
    • /
    • pp.94-105
    • /
    • 2012
  • Simple or complex defects in the lower leg, and especially in its distal third, continue to be a challenging task for reconstructive surgeons. A variety of flaps were used in the attempt to achieve excellence in form and function. After a long evolution of the reconstructive methods, including random pattern flaps, axial pattern flaps, musculocutaneous flaps and fasciocutaneous flaps, the reappraisal of the works of Manchot and Salmon by Taylor and Palmer opened the era of perforator flaps. This era began in 1989, when Koshima and Soeda, and separately Kroll and Rosenfield described the first applications of such flaps. Perforator flaps, whether free or pedicled, gained a high popularity due to their main advantages: decreasing donor-site morbidity and improving aesthetic outcome. The use as local perforator flaps in lower leg was possible due to a better understanding of the cutaneous circulation, leg vascular anatomy, angiosome and perforasome concepts, as well as innovations in flaps design. This review will describe the evolution, anatomy, flap design, and technique of the main distally pedicled propeller perforator flaps used in the reconstruction of defects in the distal third of the lower leg and foot.

A Study on the Design Factor for Increasing the Dynamic Fit of Slacks (슬랙스의 동적 적합성 향상을 위한 설계 요인 연구)

  • Cho, Sung-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.2
    • /
    • pp.162-180
    • /
    • 2008
  • The purpose of this study is to find the basic design factors that affect the changes in body surface lines caused by lower limb movements, thereby resulting in slacks that fit well regardless of whether the human form is static or in motion. Using unmarried female university students aged 18-24 as subjects, a total of 32 body surface lines (15 body surface total lines and 17 body surface segment lines) were measured in one static and 9 movement poses, The analysis first involved the calculation of the expansion and contraction rates per body part in body surface line in 9 lower limb movements, Second, a factor analysis was conducted using the expansion and contraction rates of these changes in body surface line. The results of this study are as follows, According to the factor analysis, basic design factors that affect changes in body surface lines comprised 8 types of factors as illustrated in fig, 2-fig, 9, which explained 79.2% of total variate for the variables studied, Factor 1, comprising the lower segment of center back leg line, center front leg line and inner leg line, and lower limb girth except midway thigh girth and ankle girth below hip girth, accounted for 30.3% of total variance, Factor 2, comprising waist girth, the total and upper segment of center back leg line and center tront leg line, and front and back segment of crotch length, explained 17.4% of total variance, Factor 3, the total and upper segment of lateral leg line at the center, accounted for 56.5% of total variance in accordance with Factors 1, 2, and 3, Factor 4 was the contracting upper part of lower leg between legscye girth and midway thigh girth, Factor 5 comprised the total and upper segment of inner leg line and posterior knee girth, Factor 6 was the total crotch length, Factor 7 was the ankle girth, Factor 8 was the abdomen girth.