• Title/Summary/Keyword: Lee Ga-hwan

Search Result 313, Processing Time 0.033 seconds

Dependance of thickness on the properties of B doped ZnO:Ga (GZOB) thin film on glass substrate at room temperature (유리기판에 저온 증착한 GZOB 박막의 두께에 따른 특성 변화)

  • Yu, Hyun-Kyu;Lee, Kyu-Il;Lee, Jong-Hwan;Kang, Hyun-Il;Lee, Tae-Yong;Kim, Eung-Kwon;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.88-88
    • /
    • 2008
  • In this study, effect of thickness on structural, electrical and optical properties of B doped ZnO:Ga (GZOB) films was investigated. GZOB films were deposited on glass substrates by DC magnetron sputtering. The thickness range of films were from 100 nm to 600 nm to identified as increasing thickness, stress between substrate and GZOB film. The average transmittance of the films was over 80 % until 500 nm. Then a resistivity of $9.16\times10^{-4}\Omega$-cm was obtained. We presented that a GZOB film of 400 nm was optimization to obtain a high transmittance and conductivity.

  • PDF

Properties of the Various Power Ratio in GZOB/AU Multilayers (전력비 변화에 따른 Au Multilayer 위에 증착한 GZOB 박막의 특성)

  • Lee, Jong-Hwan;Yu, Hyun-Kyu;Lee, Kyu-Il;Lee, Tae-Yong;Kang, Hyun-Il;Kim, Eung-Kwon;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.977-980
    • /
    • 2008
  • We investigated the effects of power ratio on the electrical and optical properties of Au based Ga-, B- codoped ZnO(GZOB) thin films. GZOB thin films were deposited on Au based poly carbonate(PC) substrate with various power in the range from 60 to 120 W by DC magnetron sputtering. In the result, GZOB films at 100 W exhibited a low resistivity value of $1.12\times10^{-3}\Omega-cm$, and a visible transmission of 80 % with a thickness of 300 nm. This result indicated that the addition of Ga and B in ZnO films leads to the improvement of conductivity and transparent. From the result, we can confirm the possibility of the application as transparent conductive electrodes.

경량 사물인터넷 플랫폼 상에서의 대칭키 암호 구현 기술

  • Seo, Hwa-jeong;Park, Tae-hwan;Lee, Ga-ram
    • Review of KIISC
    • /
    • v.27 no.6
    • /
    • pp.15-20
    • /
    • 2017
  • 경량 사물인터넷 플랫폼은 제한적인 연산 성능과 저장 공간을 가진다. 따라서 해당 플랫폼 상에서의 모든 연산들은 효율적으로 구현되어야 한다. 이를 위해 최근에는 경량화된 형태의 대칭키 암호화가 많이 제안되고 있다. 본 논문에서는 경량 사물인터넷 플랫폼 상에서의 효율적인 경량 대칭키 암호화 구현 방안에 대해 확인해 보도록 한다. 먼저 경량 사물인터넷 플랫폼의 특성을 확인해 보며 해당 경량 플랫폼의 특성을 활용하여 경량 대칭키 암호화 연산을 효율적으로 구현하는 방안에 대해 확인해 보도록 한다.

양자 내성 암호 최신 소프트웨어 구현 동향

  • Park, Tae-hwan;Seo, Hwa-jeong;Lee, Ga-ram;Kim, Ho-won
    • Review of KIISC
    • /
    • v.27 no.6
    • /
    • pp.21-28
    • /
    • 2017
  • 최근 양자 컴퓨터 기술의 발전에 따라 기존에 많이 사용하고 있는 대칭키 암호와 공개키 암호의 보안 위험성이 고려되어야하며, 이에 따라 양자 컴퓨터 환경에서도 보안성을 제공할 수 있는 암호 알고리즘인 양자 내성 암호에 대한 연구가 활발히 이루어지고 있으며, 이와 관련하여 미국 NIST의 양자 내성 암호 표준 공모전이 진행중에 있다. 본 논문에서는 양자 내성 암호별 다양한 플랫폼/디바이스 환경 및 언어 기반의 최신 소프트웨어 구현 동향을 살펴본다.

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF

Development of the Ka-band 20watt SSPA (Solid State Power Amplifier) Using a Spatial Combiner (공간결합기를 이용한 Ka대역 20W급 SSPA 개발)

  • Choi, Young-Rak;Lee, Jong-Woo;Lee, Su-Hyun;An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.231-238
    • /
    • 2019
  • In this paper, we have studied how to improve the amplifiers efficiency by minimizing the combining loss when several unit power amplifiers are combined to obtain high output power. Specifically, we have developed Ka-band Spatial Combining Amplifier. The fabricated Spatial Combining Amplifier is a Ka-band 20W class SSPA, which uses a 5W class unit amplifier module 8EA designed using a GaN bare die. We also combined The unit amplifier module using 8-way spatial divider and combiner with a hybrid radial structure. The output combining loss of the fabricated spatial coupler is about 0.334dB, which is about 92.6% efficiency. In this paper, we developed a Spatial Combining Amplifier with a maximum saturation output of 10W and a power addition efficiency of over 15%. As a result, we achieved the maximum saturation output of 30W and the power addition efficiency of 19%.

Design of Absorptive Type SPST MMIC Switch for MSM of Satellite Communication (위성통신용 MSM을 위한 흡수형 SPST MMIC 스위치의 설계 및 제작)

  • Yom In-Bok;Ryu Keun-Kwan;Shin Dong-Hwan;Lee Moon-Que;Oh Il-Duck;Oh Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.989-994
    • /
    • 2005
  • A MMIC(Monolithic Microwave Integrated Circuit) switch chip using InGaAs/GaAs p-HEMT process has been designed for MSM(Microwave Switch Matrix) of satellite communication system. An absorptive type MMIC switch is adopted for good reflection coefficients performances of input and output ports at both on and off states. And, a quarter wavelength impedance transformer is realized with lumped elements of MIM capacitor and spiral inductor for 3 GHz band to reduce the chip size. This MMIC switch covers the frequency range of $3.2\~3.6\;GHz$. According to the on-wafer measurement, the fabricated MMIC switch with miniature size of $1.6\;mm{\times}1.3\;mm$ demonstrates insertion loss below 2 dB and isolation above 56.8 dB, and the performance coincides with simulation results.