• Title/Summary/Keyword: Least mean square (LMS)

Search Result 287, Processing Time 0.025 seconds

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.

Performance Analysis of Improved Adaptive Predictive Filter to Generate Reference Signal in Active Power Filter (능동전력필터의 기준신호발생을 위한 개선된 적응예측필터의 성능 분석)

  • Bae Byung-Yeol;Baek Seung-Taek;Han Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.592-601
    • /
    • 2004
  • The performance of active power filter depends on the inverter characteristic, the control method, and the accuracy of reference signal generator. The accuracy of reference signal generator is the most critical item to determine the performance of active power filter. This paper introduces a novel reference signal generator composed of improved adaptive predictive filter. The performance of proposed reference signal generator was verified by means of simulation with MATLAB. The application feasibility was evaluated by building and experimenting a single-phase active power filter based on the proposed reference generator, which was implemented in the DSP(digital signal processor) TMS320C31. Both simulation and experimental results confirm that the proposed reference signal generator can be utilized for the active power filter.

Multiple model switching adaptive control for vibration control of cantilever beam with varying load using MFC actuators and sensors

  • Gao, Zhiyuan;Huang, Jiaqi;Miao, Zhonghua;Zhu, Xiaojin
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.559-567
    • /
    • 2020
  • Vibration at the tip of various flexible manipulators may affect their operation accuracy and work efficiency. To suppress such vibrations, the feasibility of using MFC actuators and sensors is investigated in this paper. Considering the convergence of the famous filtered-x least mean square (FXLMS) algorithm could not be guaranteed while it is employed for vibration suppression of plants with varying secondary path, this paper proposes a new multiple model switching adaptive control algorithm to implement the real time active vibration suppression tests with a new multiple switching strategy. The new switching strategy is based on a cost function with reconstructed error signal and disturbance signal instead of the error signal from the error sensor. And from a robustness perspective, a new variable step-size sign algorithm (VSSA) based FXLMS algorithm is proposed to improve the convergence rate. A cantilever beam with varying tip mass is employed as flexible manipulator model. MFC layers are attached on both sides of it as sensors and actuators. A co-simulation platform was built using ADAMS and MATLAB to test the feasibility of the proposed algorithms. And an experimental platform was constructed to verify the effectiveness of MFC actuators and sensors and the real-time vibration control performance. Simulation and experiment results show that the proposed FXLMS algorithm based multiple model adaptive control approach has good convergence performance under varying load conditions for the flexible cantilever beam, and the proposed FX-VSSA-LMS algorithm based multiple model adaptive control algorithm has the best vibration suppression performance.

The Design of Temporal Bone Type Implantable Microphone for Reduction of the Vibrational Noise due to Masticatory Movement (저작운동으로 인한 진동 잡음 신호의 경감을 위한 측두골 이식형 마이크로폰의 설계)

  • Woo, Seong-Tak;Jung, Eui-Sung;Lim, Hyung-Gyu;Lee, Yun-Jung;Seong, Ki-Woong;Lee, Jyung-Hyun;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2012
  • A microphone for fully implantable hearing device was generally implanted under the skin of the temporal bone. So, the implanted microphone's characteristics can be affected by the accompanying noise due to masticatory movement. In this paper, the implantable microphone with 2-channels structure was designed for reduction of the generated noise signal by masticatory movement. And an experimental model for generation of the noise by masticatory movement was developed with considering the characteristics of human temporal bone and skin. Using the model, the speech signal by a speaker and the artificial noise by a vibrator were supplied simultaneously into the experimental model, the electrical signals were measured at the proposed microphone. The collected signals were processed using a general adaptive filter with least mean square(LMS) algorithm. To confirm performance of the proposed methods, the correlation coefficient and the signal to noise ratio(SNR) before and after the signal processing were calculated. Finally, the results were compared each other.

Signal-Averaged P Wave Analysis in Patients with Paroxysmal Atrial Fibrillation (발작성 심방세동 환자의 신호평균 P파 분석)

  • 김인영;이종연;이병채;이용희;이종민;김선일;김준수
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Atrial fibrillation(AF). chronic or paroxysmal is the most frequent arrhythmia in human subjects Duration of P wave in signal-averaged electrocardiography(SAECG) reflects intra-atrial conduction time and therefore. could be used as an electrophysiological marker for atrial conduction chance at the earthy stave. So we apply the analysis method using SAECG to diagnose Paroxysmal atrial fibrillation(PAF) . Subjects Participated for the study consisted of two groups: a control group(n=34) of normal healthy volunteers and a group of AF Patients(n=38) with a documented history of PAF but no other history of cardiac disease. We evaluated the effect of several filtering and determination methods to find the starting and ending feints of the P wavy on its duration. To increase the measurement reliability of P wave duration. the automatic detection method was proposed. Also. to increase the detection rate for PAF risk, the decision threshold value was optimized using receiver operation characteristics(ROC) curve. Results showed that the highest statistical difference (p〈0.001) of the P wane duration between controls and subjects was obtained at the Processing condition, using absolute threshold vague(8.75 $\mu N$) , a least mean square(LMS) high pass filter and 30 Hz cutoff frequency. The most outstanding difference(sensitivity 88 % specificity 64.4 %) between controls and subjects was obtained at the decision threshold value of 112 ms.

Time- and Frequency-Domain Block LMS Adaptive Digital Filters: Part Ⅱ - Performance Analysis (시간영역 및 주파수영역 블럭적응 여파기에 관한 연구 : 제 2 부- 성능분석)

  • Lee, Jae-Chon;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.54-76
    • /
    • 1988
  • In Part Ⅰ of the paper, we have developed various block least mean-square (BLMS) adaptive digital filters (ADF's) based on a unified matrix treatment. In Part Ⅱ we analyze the convergence behaviors of the self-orthogonalizing frequency-domain BLMS (FBLMS) ADF and the unconstrained FBLMS (UFBLMS) ADF both for the overlap-save and overlap-add sectioning methods. We first show that, unlike the FBLMS ADF with a constant convergence factor, the convergence behavior of the self-orthogonalizing FBLMS ADF is governed by the same autocorrelation matrix as that of the UFBLMS ADF. We then show that the optimum solution of the UFBLMS ADF is the same as that of the constrained FBLMS ADF when the filter length is sufficiently long. The mean of the weight vector of the UFBLMS ADF is also shown to converge to the optimum Wiener weight vector under a proper condition. However, the steady-state mean-squared error(MSE) of the UFBLMS ADF turns out to be slightly worse than that of the constrained algorithm if the same convergence constant is used in both cases. On the other hand, when the filter length is not sufficiently long, while the constrained FBLMS ADF yields poor performance, the performance of the UFBLMS ADF can be improved to some extent by utilizing its extended filter-length capability. As for the self-orthogonalizing FBLMS ADF, we study how we can approximate the autocorrelation matrix by a diagonal matrix in the frequency domain. We also analyze the steady-state MSE's of the self-orthogonalizing FBLMS ADF's with and without the constant. Finally, we present various simulation results to verify our analytical results.

  • PDF

Time- and Frequency-Domain Block LMS Adaptive Digital Filters: Part Ⅰ- Realization Structures (시간영역 및 주파수영역 블럭적응 여파기에 관한 연구 : 제1부- 구현방법)

  • Lee, Jae-Chon;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.31-53
    • /
    • 1988
  • In this work we study extensively the structures and performance characteristics of the block least mean-square (BLMS) adaptive digital filters (ADF's) that can be realized efficiently using the fast Fourier transform (FFT). The weights of a BLMS ADF realized using the FFT can be adjusted either in the time domain or in the frequency domain, leading to the time-domain BLMS(TBLMS) algorithm or the frequency-domain BLMS (FBLMS) algorithm, respectively. In Part Ⅰof the paper, we first present new results on the overlap-add realization and the number-theoretic transform realization of the FBLMS ADF's. Then, we study how we can incorporate the concept of different frequency-weighting on the error signals and the self-orthogonalization of weight adjustment in the FBLMS ADF's , and also in the TBLMS ADF's. As a result, we show that the TBLMS ADF can also be made to have the same fast convergence speed as that of the self-orthogonalizing FBLMS ADF. Next, based on the properties of the sectioning operations in weight adjustment, we discuss unconstrained FBLMS algorithms that can reduce two FFT operations both for the overlap-save and overlap-add realizations. Finally, we investigate by computer simulation the effects of different parameter values and different algorithms on the convergence behaviors of the FBLMS and TBLMS ADF's. In Part Ⅱ of the paper, we will analyze the convergence characteristics of the TBLMS and FBLMS ADF's.

  • PDF