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Time- and Frequency-Domain Block LMS

Adaptive Digital Filters: Part T - Realization Structures

ABSTRACT

In“this work we study extensively the structures and performance characteristics of the block least
mean-square (BLMS) adaptive digita! filters (ADF's) that can be realized efficiently using the fast Fourier
transform (FFT), The weights of a BEMS ADF realized using the FFT can be adjusted ejther in the time
domain or in the frequency domain, leading to the time-domain BLMS (TBLMS) algorithm or the fre.
quency-domain BLMS (FBLMS) algorithm, respectively., In Part [ of the paper, we first present new
results on the overlap-add realization and the number-theoretic transform realization of the FBLMS
ADF’s. Then, we study how we can incorporate the concept of different frequency-weighting on the
error signals and the self-orthogonalization of weight adjustment in the FBLMS ADF's, and also in the
TBIEMS ADF’s. As a result, we show that the TBLMS ADF can also be made to have the same fast conver-
gence speed as that of the self-orthogonalizing FBLMS ADF. Next, based on the properties of the sec-
tioning operations in weight adjustment, we discuss unconstrained FBLMS algorithms that can reduce
two FFT operations both for the overlap-save and overlap-add realizations. Finally, we investigate by
computer simulation the effects of different parameter values and different algorithms on the convergence
behaviors of the FBLMS and TBLMS ADF's. In Part II of the paper, we will analyze the convergence
characteristics of the TBLMS and FBLMS ADF’s.
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L. INTRODUCTION

Since Widrow and Hoff proposed the least
mean-gquare (LMS) algorithm [1}, many re-
searchers have studied various structures and
adaptation algorithms for adaptive digital filters
(ADF’s), At present, applications of ADF’s
can be found in many diverse fields, and their
application areas are being widened further with
the rapid advance in the digital integrated circuit
technology {1]-[6].

The performance characteristics of the LMS
algorithm have been studied extenmsively, and
thus are relatively well understood [7). Among
various structures and adaptation algorithms
proposed so far, the finite impulse response
(FIR) ADF using the LMS algorithm is being
widely used due to its relative simplicity in
realization. However, one drawback of the LMS
algorithm is known to be its slow convergence
speed when the input signals are highly correlat-
ed [11,(2].

So far, considerable research effort has been
directed toward the realization of the FIR
ADF’s using the LMS-type algorithms in the
frequency domain (8]}-[35}. The major motiva-
tion for such frequency-domain ADF’s is to
develop an ADF whick has improved conver-
gence speed or is computationally more efficient
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in comparison to the conventional LMS ADF.
In the frequency-domain adaptive filtering, the
discrete Fourier transform (DFT) of the input
signals provides a set of approximately uncor-
related signals, thereby making it possible to
implement a self-orthogonalizing algorithm easily
in the frequency domain for improving the
convergence speed [20]-[23),(261,[34],[35]
At the same time, by processing data on a block-
by-block basis, the transversal ADF can be real-
ized efficiently using the fast Fourier transform

(FFT) and an appropriate sectioning method
{13],124],{33]. However, the computational

savings cannot be expected in some of the fre.
quency-domain ADF’s that are operated on a
sample-by-sample basis {i4],(18],{23],(35].

One of the most significant work done in
the frequency-domain adaptive filtering appears
toc be the work by Clark, Mitra, and Parker
(12],115],[16]1,[19],[24]. In [16], by intro-
ducing the concept of block Wiener filtering,
they presented the basic theory and convergence
properties of the FIR block LMS (BLMS) ADF
that is obtained by minimizing the block mean-
squared error (BMSE). As a resuit, they obtained
a condition under which the convergence be-
haviors of the LMS and BLMS ADF’s are the
same for stationary inputs. In a subsequent
paper [24]), specific implementations of the
BIMS ADF were discussed based on the FVF1
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and an appropriate sectioning method. It was
shown that the weights of the BLMS ADF
realized using the FFT can be adjusted either in
the time domain or in the frequency domain,
leading to the time-domain BLMS (TBLMS)
algorithm or the frequency-domain BLMS
(FBLMS) algorithm, respectively. Also. it was
shown that all of the known frequency-domain
ADF’s in the literature are included in the
realization structures derived in (24]. Another
significant result is that the overlap-save imple-
mentation requires less computation for the
BLMS ADF than the overlap-add impiementa-
tion.

The self-orthogonalization method in the
frequency domain was iniroduced as a fre-
guency-domain LMS§ (FLMS) algorithm for the
first time by Narayan and Peterson [14]. As for
the FBLMS ADF, a similar concept was studied
by Mansour and Gray {20] and by Picchi and
Prati [26]. It is noted here that the FLMS
ADF in [14] was proposed independently of
the BLMS ADF. However]aithough the self-
orthogonalizing FLMS and FBLMS ADF's
were known to have significantly improved
convergence speed, their performance, parti-
cularly the steady-state mean-squared error
(MSE), has not been studied analytically until
recently. The performance of the FLMS ADF
has recently been anaiyzed by Lee and Un
(35]. In this study it was shown that its conver-
gence factor can be chosen such that the steady-
state MSE satisfies the design specification.
In another work by the same authors, it has
been found that the FBLMS ADF reduces to
the FLMS ADF when the block length is equal
to one, and the convergence factors of the two
ADF’s can be related to each other {28]. There-
fore, based on the results of [28} and (35},
the steadyv-state pertormance o: the seli-ortho-
gonalizing FBLMS ADF can he investigated
Although severa) structures of the BLMS ADF
were studied in [24]. no extensive results on the
performance characteristics of the BLMS ADF's
have been reported yet.

In this work, we extensively study the
structures and performance characteristics of the
BLMS ADF's. Part 1 is devoted largely to the
systematic development of various BLMS ADF’s,
whereas Part II is concerned with a comprehen-
sive performance analysis of those algorithms
developed in Part 1. In Part I of the paper, based
on a unified matrix treatment, we first discuss
the overlap-save and overiap-add sectioning
methods for the fast convoiution realization of
the TBLMS ADF, and then extend our discus-
sion to the FBLMS ADF. In vparticular, we
present some new results of the overlap-add
realization and the number-theoretic transform
realization of the FBLMS ADF. We then study
how we can incorporate in the BLMS ADF’s
theJ concept of different frequency-weighting on
the error signals and the concept of the self-
orthogonalization of the weight adjustment in
the frequency domain for improving the con-
vergence speed. These objectives are accomplish-
ed by formulating it directly in the frequency
domain, thereby obtaining the frequency-
weighted FBLMS (FWFBLMS) algorithm and the
self-orthogonalizing FBLMS algorithm. It is
shown that, when frequency weighting is uni-
form, the FWFBLMS algorithms realized using
the overlap-save and overlap-add sectioning
methods reduce to the FBLMS algorithms.
Also, we investigate the effect of the conver-
gence factor on the steady-state MSE of the
self-orthogonalizing FBLMS ADF’s. Then, it is
shown that we can derive the TBLMS versions
of those FBLMS algorithms utilizing the con-
cepts of frequency-weighting and self-orthogonal-
ization. Therefore, the TBLMS ADF can be
made to have the same fast convergence speed
as that of the self-orthogonalizing FBLMS
ADF. Next, we investigate the possibility of
removing some sectioning operations in the
weight-adjustment algorithms of the FBLMS
ADF’s realized using the overlap-save and over-
lap-add sectioning methods. Specifically, based
on the properties of the sectioning matrices
used in representing the original FBLMS ADF's,
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possible reduced forms are suggested both for
the overlap-save and overlap-add realizations.
One of these algorithms has been called the
unconstrained FBLMS (UFBLMS) algorithm in
the literature [21]. The performance character-
istics of these UFBLMS ADF’s will be analyzed
extensively in Part II.

The organization of Part I of the paper is
as follows, In Section I we introduce the matrix
representations of the BLMS ADF and its varia-
tions realized using the fast convolution. In
Section IIl we discuss the frequency-weighted
and self-orthogonalizing algorithms for the
FBLMS ADF, and then for the TBLMS ADF,
Based on the properties of the sectioning mat-
rices, we investigate the structures of the un-
constrained FBLMS weight-adjustment algor-
ithms both for the overlap-save and overtap-
add sectioning methods in Section FV. In Section
V we present and discuss computer simulation
results demonstrating the performance charac.
teristics of the BLMS ADF’s. Finally, we draw
conclusions in Section VI.

Ii. REALIZATION OF BLMS ADF BASED ON
FAST CONVOLUTION

In this section, we first introduce the matrix
representations of the BLMS ADF and its varia-
tions which will be uged in our subsequent dis-
cussion. The fast convolution realization of the
BLMS ADF using the two common sectioning
methods, ie., overlap-save and overlap-add sec-
tioning, was discussed by Clark et al. [24].
Unlike for the case of overlap-save sectioning,
they discussed the overlap-add realization me-
thod only when the block length and the number
of weights are equal. In this paper, we present
new results on the overlap-add realization
method,

A. System Equations of the BLMS ADF

We consider an FIR ADF operated on the
block-by-block basis, each block being L data
samples long. We assume that the FIR ADF
has M weights ' wu: and that the filter produces
its output v,: from the input .x,: and the
desired response «n:. All the signals are assum-
ed to be stationary and real-valued, Throughout
the paper, we use *“k’ for the block index.

We begin with the BMSE defined as’

- :
- ! ;
en— Elecad L
where
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In (1), E[-] and *‘t”> denote statistical expecta-
tion and transpose of a matrix or a vector, res-
pectively, Following the same approach used in
derivation of the LMS algorithm, one can obtain
the system equations of the BLMS ADF as the
following [16),(22),[24):

y.‘+X,‘wk, e

& - dy - ¥ b
and
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where

1 ; . . . . .
In this paper. to represent vectors and matrices, we use boldface lower case and capital letters. respectively. l:lements
of vectors and matrices are represented by lower case letters. In addition, we use script ietters to denote transform-

domain variables.
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and #° is a convergence factor, In (1) and (2},
the sizes of X, and w, are (LxM) and (Mx}), re-
spectively, and those of colunm vectors y, . dy

and e, are all (Lx1). It is noted here that
direct realization of (2) requires 2LM multi-
plication operations,

B. Fast Convolution Realization

The convolution (2a) and the correlation
(2¢) may be computed efficiently using the fact
that Xi is Toeplitz when it is square. That is,
X« and X\ have a structure that can be made
a circulant matrix by appropriate modification,
which is equivalent to the overlap-save or over-
lap-add sectioning procedure (36],{37]. As will
be seen, the use of matrix representations in our
discussion makes it possible to handle various
algorithms effectively in studying the character-
istics of the BLMS ADF.

1) Overlap-Save Sectioning: A fast con-
volution realization of the BLMS ADF using
the FFT and the overlap-save sectioning method
is well documented in [24}. Therefore, here
we just summarize the results using our nota-
tions, First, we define three frequency-domain
variables that are given by the transforms of
the augmented time-domain variables as the
following [22],{24):

sAn & F X F (3a}

s@i 2 F s, {3b)
and

0 2 F e, (3ci

where ) is the (NxN)} DFT matrix with N S i M

~1:N,. and the two (Nx1) column vectors are
defined by
W,
st |8 (3d)
i O I8 -
Reké!;;ll. t {3e)

and U denotes a zero vector or matrix. In (3a),
sXx is an (NxN) circulant matrix whose first
column for the case of the widely-used overlap-
save sectioning is given as®

e . 1
O 0 Yk M1 XKpaemo2 XKL -1 EXRUXKL o1 " NRL Lo 2 XKL alo1

Nz  (M-1) previous data
block
(4>

where N, is the number of zero data, which
allows to choose a suitable transform length of
N. Thus, the circulant matrix sX« contains the
(LxM) matrix X«
foilows [22]3:

on the lower left corner as

Xa i Xy "t
X 17X

M N M

s Xn & 1

Therefore, one can see from the discrete con-
volution theorem [37] that X, of (3a)isan
(NxN) diagonal matrix whost diagonal elements
are given by the DFT of the first column of

-

" Assuming the circulat down shift property, a citculant matrix is compietely speciiled by asy coiumn or row (24§,

{37).

3 . .
It is noted here that in (5) the direct relation between X. and s X« makes it possible 1o tealize the BLMS ADF more
efficiently using overlap-save sectioning than overlap-add sectioning. As will be seen later, since the effects of the
matrices Xa. X, and X, are removed by the sectioning operations, the [N, zeto data in (4) can be replaced by the

Previous data | x,, wun. 1. Xk oMeNL <2: 0 NKL- Mot Xki oM.

1, data in the current
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sXk in (4) {22],[24]. Consequently, by com-
bining the equations of (2a),(2¢), and (3)«5),
one can get the same results as those in [24].
That is,

- )"k=P,L,F—1(sX|( g(l}]g) (63)

and

Wi = Wy hu PN, F_'(st s € ) (6b)

where the overbar denotes complex conjugate.
In (6}, P, and PM, are (LxN) and (MxN) sec-
tioning matrices for obteining the final results
and they are defined as

PiafOiL]L and Pualk|QIM {7

where | denotes an identity matrix and the
subscript on [ represents the dimension of I
It is noted that no constraints on the values of
L M and N have been imposed in our discussion
of the overlap-save realization method,

So far, we have discussed the matrix re-
presentation of the BLMS ADF realized using
the FFT and overlap-save sectioning method.
Before proceeding further, we summarize the
design procedure used which will be useful in
deriving the overlap-add realization method
later in the next subsection.

Overlapsave Sectioning Procedure for PLMS
ADF

Step 1 : Construct the circulant matrix sX« (In
other words, choose the elements of
the first column of ,X,) --- Sectioning
of input data [see (4) and (5)].

Step 2 : Augment the weight and error vectors
according to the relation between
‘A and (X, (or X and <X\ )such
that ¥« and Awy  <an be contained in
the products (X.,w. and (X! .e,. res-

pectively. --- Augmentation of co-
efficients [see |(2a),(3a)(3d){5) ' and
1(2¢),(3¢),(3e),(5)1].

Step 3 : Design appropriate outpnt sectioning
matrices so as to obtain y, :and 4w, from
<Xy W and <Xi se . respectively.
--- Sectioning of output data {see(2a),
(32),(5),(6a),(7)i and '(2c),(3e),(5),
6b)(7)il.

2) Overlap-add Sectioning: Remembéring
the three design steps outlined above for overlap-
save sectioning, let us consider the overlap-add
sectioning procedure for the fast convolution
realization of a BLMS ADF. In the first step,
we construct an (NxN) circulant matrix ,X, for
overlap-add sectioning. The most common choice
is to design the first column of .X« as

?Xm_ Nklat " XkLab-2 KgLnlo) O rrmremeeson 01

L data in the current block (M - | + Nz} zeros

B
It can easily be expected that, unlike the overlap-
save sectioning case, some part of Xk in (2)
will not appear in X«  because (8) does not

include the previous data | x, _ oy, %o wos.
Xki-z¥kio 1. As discussed in [24], this aspect
together with the change of the weights once in
every block results in the increased number of
FFT’s needed in the overlap-add realization.
The number of the requited FFT’s in the
overlap-add reatization depends on the relative
size of L with respect to that of M. In the follow-
ing, we illustrate the reifationship between
Xx and aX,» for different L’s given M. In these
examples, the value of L is varied from 2 o 4

for M=4 and N, - (.

Examples of X and . X,

DM, L~ 7 and N- 5
ok WXzt o1 Nox [ : i
X, - ! Lo A
c . 1
Ko Xow ) Xewos rk ;
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T D T : Nyk-1 Nak H U U 0 Naw -3 Ndw-2
. Y 0 |‘(2kw Nok ! 0 0 1 :_4 _ _
(. ' o b Xgno2 Nek-r Nax 10 0 0 LT
I | |
] 0 UXgk .1 Nok 1 0 i ] R 'i
H""r"“l 2 Xk VNeke3 o Nakez Nawer Nak . 0 a
. S pos it T
¥ j it N PNk . i 1 ‘ .
\L L%___w V] “X.kﬂa Ngk -2 Naksl b Nk U U
A B a S !
0 0 | Xak 3 Naks2 "Nekit Naw 0
Ceoo :
0 0 0 L.\’Ek_&a‘!_ X4k-2  Xawo 1 Nk
e Ay L A ad NooB A K
I ‘ T Tx?k.—i T Niwker o Naw
. [ Fme e !
A | Naker o Yo IXsk 1.z N3k o1y 0
. |
§ o
X X N Ny k- t .
- ft ' > -t We can see from the abobe examples that, if we
Ay | compute(2a)and(2c)using the overlap-add sec
tioning method, we need . X, » X«.».and s X«.:for
computing A, \B,., and Cx... respectively. In
general, to compute X, w, and Xk & .we need. X«
.- aXi 1. a X rwherer - Mo ;. i-1 indicating
.r Nik : 0 (} 1 Nak .z Noax . . !
: . the least integer that is equal to or greater than
1 - - -
'UNakes Vak : i) U 1] Nak the quantity inside the bracket. It is noted that,
| . when. -\l 1the value of r becomes the minimum
ry { t ! . . : .
R ! ¢ value of 1 in which case X« and.X.  will be
X 0 5_\“‘2 PPN ) used. For simplicity, we will consider the case of
: - : .M lin our discussion of the overlap-add
0 Y ) N3k -t ?'ijlull Nk 0 . . . .
Lo | realization. For our discussion of overlap-add
1 . . . . . N
U 0 U xak_,: et Nk realization, we depict X. and .X« in Fig. |
whenL =M LIn this figure. A; and A (or By and
A ” :
* B, By t have the same elements, but are located in
different places It is noted that if L'>M 1A, and
By always exist in .Xx independently of the
nonnegative integer N\;. However, the complete
.o Ay i i : SO e N,
oM 5l ofand N k exists only if N, 1:x0tiie, N,o1),  and
BX exists only if 1. Al ..., 1. ~MTherefore,
|‘I Koo | Xewora Rk Xowao the use of A, in «Xx and B ,in ,Xy_, is most
, i the use of A, in ,X, and B, , in Xy . I8
\. : i most desirable for computing (2a) and (2¢). The
i . . .. . 2
t 1o Xz Newar o N (TSI second step is to augment the weight and error
| e — — — p=
| ! _ _ vectors so as to compute y. and Aw, in terms of
Povana Naw Naw \ ok i , . A .
o I, o :\( - Ax and B, . included in X« and aX. .. res
Ax B, pectively.
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Fig. 1. A schematic representation of X, and .X. for
overlap-add sectioning when [. =M -1 (L=5,
M=4, N;=2).
@ x, (b) . X,

One can see from (2a), (2¢), and Fig. !
that in order to use A and B ., we must de-
fine an augmented weight vector and two aug-
mented error vectors as the following:

ot -
W 2 G, t9a;
" 19b)
2l 9l o
and
.=x"h'a='i.. el 0y 0y oy Caom gy 0 it
[ MO Ny

it is noted from (9b) and (9c) thar«®« and ¢
are related to each other via the (NxN) matrix
Su i.a 4S

a€k " Sy .0 alk K

whre

in the third step, by properly sectioning the
oufut, we can obtain ¥« and . %, as

Yoo PoaXe awe QL a X awe AU

and

— oL o
2w Pl a Xy stk v Ul o XK e il

where the {LxN) sectioning matrices P, and
Q, .and the (MxN) matrix U, , are defined as

P2 kb0l
J. N--L

~ 0 I, 0}M4

.. =0 O" o0 L-M4 )
1 MOTON;

and

. . (} AU )

lm. = 0 i!m;» »(‘)!“] ]
LML

Defining the frequency-domain variables as
SO0 By F 1,

o S W ot
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20k o Faey, (16¢}
and
sk 2 Faey 116d)

we finally get the fast convolution realization
of the BLMS ADF based on overlap-add sec-
tioning as the following:

. LI | 4 " | - \
»w D F aXs swx ! QU F7ULY ) awn)

and

W

N8

To demonstrate the overiap-add realization
method discussed above, let us congider a low-
order filter example with M=2, L=3, and N=5

(i.e., N, =1), for which Y, and g4 W, aregiven

by
Nk Nk
Wa.a
Yoo
Nk Nk | 119a!
N3w -2 AS T
and
[ e
! }
| i Ny Nik 2 | ; |
Lo S T ek
SR B
T !
Using the definitions of ANkl W b and

«Co. we obtain four convolution and correlation
terms as follows,

W, u, P\q, F ! I’n“'k a®k tT l.‘M. O l(a.\'kac..:]i

: \:;1:_-(}_ i \] Xak+2 X3no| ] 'IWx.O;]
]
1
' } ! |
V Xgker Xak : 0 0 Xik 12 fw, 1)
X IRGLIES.
' i
aXkaWe ™ : Nsn_n_ Fi!kn_| ®sx ¢ b 0
0 X3k+3 MNak+1 Xk ) 0
i 0 Nakep Y Nok f
(202 )
-~
Xix-3 O 0 Nsk-1 Xik-2 I“‘n. OIW
'
Xik-z Xsn-s O 0 X3k :_“f_'“_l_l
aXkovaWik Xak-r Yik-2 Nen 3 U 0 1}
:_U'-_ _ 53111_: Xak-2 Xk 3 O 0
L 0 0 Nak | X3k-2 X3u-3 0
(20b]
TN T Nawa Xawkaz O 0 T
: | | 1
. i
Rt X3k Nap o1t Nakez () Lyl :
€@ o e |
)
aXkali t 8] Nk N3k .1 Nakez E_'-'i“‘ 2,
Xy -2 {0 0 N3k N3k 4 ()
Nak-l Njk-23 ] 0 Nax L {}
{20¢
and
l Nikey Xsk-z Naw i 0 0 ’ 0
\ { Nak 3 Nower :{3: L0 ; 0
| i |
aX;‘ yuly ” ‘ 9] i Mik 3 N3k o2 Mok ~ i l
t Nag ¢ 1} 0 Man . Now oz | j_‘“_.h_ |
i New - vy i i e 1 Voo

Consequently, according to (11)-(15) and ¢20),
we get

——-—-
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. X1k Wi, o Xak-1 Wk
¥i=| Xake1Wio T XskWk T 0
X3k o2 Wi.o ¥ Xoke| Wk.) 0
Nk Wi.o = Nak-1 Wi, 1
=1 Xk aWkee T XauWk {21a!

N3ks+2 Wkoo ' X3pei Wk

Nak €3k Xak+1€3k 01 +,"§3k1 223Kk +2
20 Wy

Xaw €t Xawo1@ak0e

{21b)

| Xsx €k T Xaker €3k 1 1 Xok-2 €342

Xak -1 Usx + Xk €3+ + Nak—t £3k42 ]

It is noted that in [24], when L=M, aw, was
computed using A, and B.".,and y, was com-
puted using A, and B, However, in that
case, more restrictions must be imposed on the
parameter values, Specifically, to use A, and
B,”, it is required that L. »M andN; "t M.The
latter condition comes from the fact that to
obtain a correct . w,, A, and D in Fig. 1 should
not be overlapped and thus A X; - 1.. Conse-
quently, when [, -pMand N,>[, \] one can obtain
from (2¢),(9),(16) and Fig. 1 an alternative
realization method for weight adjustment as

Wi, Wy i Py, F rxafhae” R TR l":a_?li Va@el:

22a!

where the (MxN) sectioning matrix  Va is

defined as
v ol 9 ‘_'_'_QJ‘
SV UV S 3 _
MAN M L LM 2l

It is noted that, when L=M andN. |. the results
of (17) and {22) become the same as those in

0 ]
X3k-1 €3k

[24). Comparing (18) and (22), it appears that
realization of the BLMS ADF based on (18)
requires one more FFT in comparison to that
based on (22). However, one can note from (7),
{9¢),(15), and Fig, 1 that the first element of
the product aXk_, a@« is always zero, and thus
Vu, in (18) can be replaced by P., Therefore, we
can realize (18) with one FFT operation elimi-
nated as the following:

Wiy - Wt Py, F lﬁa:\"’k a€c i a Xy s peg) i

Note that the two weight-adjustment algorithms
in (18) and (23) yield the same performance.

C. Frequency-domain "LMS Algorithms

Up to now, we have discussed efficient
realization of the BLMS ADF in (2) using the
fast convolution. As a result, the weight adjust-
ment algorithm in (2¢), which is described in
terms of the time-domain variahles, can be
realized using the FFT’s as in (&b),(18),(22),
and (23). However, in those algorithms the
weights are adjusted still in the time domain.
Hereafter, we shall cail (6b}, (18}, and (22
the time-domain BLMS (TBLMS} algorithms.
The weights of the BLMS algorithm realized
using the FFT's can also be adjusted in the fre-
quency domain. Using the definition of the
frequency-domain weight vectors, we obtain the
frequency-domain BLMS (FBLMS) algorithms
{(6b)},(18),(22), and (23).
respectively, as the following:

corrésponding to
Overlap-Save

sy T g - fl P“,n '_.,.“;\ Y

w

Overlap-Add |

Ay a1 $hw N €0 e A 0
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or

a@ . T Tl PM.'J‘-u‘\Jh a€yx ' a -\.n 1€ (25bt

Overlap-Add IT :

a1 e Py X e T Yada Y aet i 26

In (24)(26), the {NxN) matrices P, , {\,, and
Vu.o are defined as

PuooFPus 10 G2 Ml F Loand Yuoel F¥uo b F

27
where
AP M U N
. . .
[M.lJ _-:'.l () ]L, [-M.Du (.’ ii‘
N N
BN ;
] ’ [ S 7
and \“‘";( o i1 2
N

As will be seen in Section IV, the FBLMS algor-
ithms have some special structures resuiting
from the unique properties of Puo" s and
Vu.e.In particular, the FBLMS algorithms appear
to be working well without the sectioning
operations represented by /4, and ., in
most applications, However, V', , cannot be
removed without serious performance degrada-
tion.

D. Alternative Realization Structures

It is known that the number-theoretic
transforms (NTT’s) have several desirable pro-
perties in computing convolutions and cor-
relations in comparison to the FFT [38]. How-
ever for the NTT realization, the complex
conjugate operation in computing . w, should
be avoided. To eliminate the complex conju-
gate, we apply the result in (39] to the TBLMS
and FBLMS algorithms realized using overlap-
save sectioning. As a result, for (6b) and (24)

we obtain alternative adjustment algorithms,
respectively, as the following [22],(33]:

Wi, - Witu PM. F: s“'k"jF—.I s€! 2%
and
wrn . swi o FPyGF UG IF ! (o0 90

It is noted here that, unlike (6b) and (24), the
algorithms shown in (28) and (29) can be realiz-
ed using either the NTT or the FFT. Using the
relation ¥ = NE(39], the FBLMS algorithm of
(29) can be realized alternatively as

s —s@x FuNPuoEis X (F et {34

In (30), the (NxN) matrix E is defined by

“

Tafeast ews 8 Ty S el 1SiGENL 6L

where & !+ and i ! denote the delta function and
the modulo N operation, respectively. It can be
seen from (30) and (31) that E does not involve
multiplication operations and is actuallty a
matrix representation of reversing (modulo N)
operations on the N rows of a matrix or a vector
that follows 1. A similar discussion can be
made for overlap-add sectioning.

Hi. INCORPORATION OF FREQUENCY-
DOMAIN INFORMATION IN BILMS
ADF’s

In Section II we have discussed the TBLMS
and FBLMS algorithms as efficient realization
methods for the BEMS ADF that we derived
by minimizing the BMSF defined originally in
the time domain. Of course, we can consider
minimization of the BMSE defined alternatively
in the frequency domain, Thus, the FBLMS
algorithm can also be derived directly by mini-
mizing the frequency-domain BMSE {FBMSE)
(211,(24].
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Cur main concern here is how we can in-
corporate in BLMS ADF’s some desirable infor-
mation which originates from the frequency-
domain consideration. It is conceptually natural
to design those algorithms directly in the fre-
quency domain. Different weighting on the
frequency-domain errors and self-orthogonaliza-
tion of the frequency-domain weights will be
discussed in this context, Then, it will be shown
that these frequency-domain modifications done
in the FBLMS algorithms can be realized equally

in the TBLMS algorithms.

A, Frequency-Weighted FBLMS Algorithms

In some applications, it is desirable to design
the BLMS ADF with different frequency-weight-
ing on the error signals depending on the relative
significance of various frequency bands. For
example, in speech enhancement it is more
important perceptually to reduce noise in the
frequency range of 1 to 3 kHz [31],[40].
Another example is designing of fixed-coeffi-
cient digital filters using the LMS algorithm, in
which frequency weighting can be utilized ef-
fectively to satisfy the motre critical design
réquirement at certain frequencies than at
other (1, Chap.9]. As a performance criterion
satisfying this need, we define the frequency-
weighted BMSE(FWBMSE) as?

ei’AE[ ef Te) (33

where the asterisk denotes complex-conjugate
transpose of a vector or a matrix, In (32), " isan
(NxN) diagonal mat}ix whose diagonal elements
are nonnegative and their relative magnitudes
represent the relative significance of each fre-
quency component. It should be noted from (32)
that the frequency-domain error vector e, has
not been specified yet. The frequency-domain
error vector . is obtained by transforming the

augmented error vector in which zero data are
added to the time-domain error vector in an
appropriate wagy. On the other hand, the time-
domain error vector is also related directly to
the filter output vector through the relation

o= dy — yx« Therefore, the frequency-domain error

vector €. can be of different form depending
on how the augmented error vector and the
output vector are computed. This implies that
different weight-adjustment algorithms can result
from different computation methods for y,. In
other words, unlike in the minimization of the
time-domain BMSE, some information on the
filter realization must be specified in the fre-
quency-domain formulation.
Let us consider the overlap-save and over-

lap-add cases in oder. The frequency-domain
error vector e, for the overlap-save realiza-
tion can be obtained from (2b),(3¢),(3e}, and
(6a). Since we are going to compute - cwi' * I,
e/ Oswy there must be some constraint on- s«
{see (24}]. As done in {20] and P, , sy 7 v,
we can implement this constraint as the follow-
ing:

s st~ PoLleXx Puo stwi) 14
where

«;dkéFi ::[)k] :_I %1 & FPy F!

0 J N-I
P,
N

and Py 5‘ 1

Noting from (32) that 7"~ kT * (e i * e
one can obtain & sw as

Lk }'- e Pn.ls.‘-l\ Pw.n}* gttt S€R
Thus, using an instantaneously estimated grad-
ient, we get a frequency-weighted FBLMS

4 . . i
It is noted that there is no distance concept in the NTT case. Therefore, the NTT realization will not be considered
whenever the concept of magnitude is necessary in our discussion.
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(FWFBLMS) algorithm as the following:

s@u-1 T s M Pn,o slfn .1 Fsek‘ 1361

In obtaining (36}, we used the relations pz, p,,
and P, - P, [see (27) and (34)]. It is noted
from (36) that, when [ is an identity matrix,
the FWFBLMS algorithm teduces to the FBLMS
algorithm in (24} since  Po€¢ .04 from
(3¢),(3e) and (34),

Similarly, as for the case of overlap-add
realization, the frequency-domain error vector
.€. can be represented from (2b),(9b),(17)
and (25b) by

Al a0 P X Ql.n an APy sy AT

where Pi..o _\.'-_-FP[__o L ]‘ Ql.o ;;_-FQLo F ' .

R sk
adk:l‘r IS T P.o2 0 s
N
' ICRE
and., Q¢ & 0 sy
N

Thus, we obtain ,w.2s

Zawn i r 2\.P|_,I}a‘"k 'Q|.na‘x;<.1] Puo L¥
rri.Z :|eh'=‘l_i. {.';H]
As done in derivation of (36), we finally obtain

an FWFBLMS aigorithm based on overlap
add sectioning as the following:

a@i.1 - a@n T 2 Pwo tale e Taew - Ak Q:_nr ati !,

-

Even when [ is an identity matrix, the adjust-
ment algorithm (39) in its present form appears
to be somewhat different from (25b) though
L .uey e However, it can be shown that using

the definitions of Q... and Su ... in (10),(14),
and (37) leads to

T..n = Su o . Ho

Therefore, when T . we get for the second
term of (39)

a X Q Toalk™ aT‘k  FSy et ﬂ-‘_fk-l a€x 141}

Consequently, we can see that, unlike (25a),
the FBLMS algorithm (25b) can be formulated
directly in the frequency domain. This is be-
cause, when computing the correlation in (25a),
we did not use the same 4, and B, 6 asin
computation of the convolution (11).

B. Self-orthogonalizing FBLMS Algorithms

Several researchers proposed the so-called
self-orthogonalizing algorithms to improve the
convergence speed of the LMS-type algorithm
(41],i42). The self-orthogonalizing algorithm
uses a matrix convergence factor that is obtained
by multiplying the inverse of the autocorrela-
tion matrix by a scalar constant. It can easily
be shown from (1) and (2) that the mean of the
weight-error  vector which characterizes the
convergence behavior of the BLMS algorithm
in (2) is given as

Eivio 0=y =1 sRx)EL %) 42

where v, 4w, — Wonr and pRes ELXE Xl

Therefore, a self-orthogonalizing algorithm for
(2) can be of the following form:

w... ow, oy R Xie, K

where 7 is a constant that affects the conver-
gence behavior of the algorithm. Since the
FBLMS algorithim is an exact implementation of
the BLMS algorithm, a self-orthogonalizing
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overlap-save FBLMS algorithm which is equi-
valent to (43) becomes from {(3d) and (6b)

R:' 1 0 —
s LT s Y Fl “() 0 J 1 Py s X s€
MONM g

However, in practice the self-orthogonali-
zing algorithms in the frequency domain have
been usually realized by usging the frequency-
domain information {i.e., frequency-domain
power) [14],[21]), The self-orthogonalizing
overlap-save FBLMS algorithm that has attracted
attention recently can be represented as the
following [22],[26],[34]:

sy s 1Y Puo R X s€ 5%

So far, the use of an {NxN) diagonal matrix for
<R, in (45) has been successful according to
simulation results, and its diagonal elements
are given as the following {21],[35]:

st édiag [széx‘n. spx.l,“" sf:Jk,l,"‘. S'!;)K\N—I ) (46a)
where
sph_igﬁgP;_.,.Jr- (1 -8} el sEk.i N

PSi=N -1, ' 46 b)

and sxw.. is the iw diagonal element of <X\ . We
can see from (46) that each diagonal element of
«Ri is an estimated power spectrum for each
frequency component of the imput using a one-
pole low-pass filter (LPF}, In {(46b), the smooth-
ing constant 3 controls the accuracy and the
time constant in estimating the frequency-
domain signal power (35]. It is noted that in
{261 the frequency-domain signal power.{’, ;was
estimated alternatively using the cumulative
average up to the present time as the following:

(RS- A o

Comparing the two self-orthogonalizing
FBLMS algorithms of {44) and (45), we can see
that realization of (44) requires far more com-
putations than that of (45) [29]. Particularly,
estimation of R, and inversion of the estimated
matrix are required for (44). Also, it is seen from
{(44) and (45) that the self-orthogonalization
operations are done in a different order in two
cases, that is, after and before the sectioning
operation ., respectively. Therefore, noting
that (44) is an exact implementation of (43},
one may raise a question as to how the self-
orthogonalizing FBLMS algorithm in (45)
works. This aspect will be discussed in Part II.

As for the case of the overlap-add section-
ing realization, we propose the seif-orthogonali-
zing FBLMS algorithm of the following form:

Ak T a@y TIPH.o {-:1"&15 .-:Ta FLCE Jll{l-. p .-"-fk 1 a€

a8

where
aRk sdiag, }.Jk.ﬂ- A I')K.I PR :JP:\ Ty pi._ N
‘..I‘J,‘_I;B&Pk PPN S C AT S JE\'--E- HEisN L

and ar«; is the.i,,diagonal element of .Y,

We now investigate the relation between
the convergence factors r and ¥ based on the
results published recently, Detailed convergence
analyses of the self-orthogonalizing FBLMS
algorithms both for overlap-save and overlap-
add sectioning will be done in Part II. Our dis-
cussion in the following applies to the overlap-
save case only, It is known that, given the values
of M and . the TBLMS and FBLMS ADF's
described in (6),(17),(18),{22a},(23)(26}. and
{28)-(30) have the same steady-state MSE tin
the region of convergence) regardless o1 [
including the LMS case for L=1 [13],[f16].
[22). Of course. the steady-state performances
of the self-orthogonalizing FBLMS algorithms

realized usjng the overlap-save sectioning method!
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will be affected significantly by the choice of
the convergence factor » in {(45).

Recently, it has been found that the FBLMS
AD¥F reduces to the FLMS ADF regardless of
self-orthogonalization when the block length
is equal to one [22], [28]. Also. it has heen
shown that. for the same steadv-state MSE.
the convergence tactor of the FBLMS ADF
must be N times that of the FLMS ADF. It we
denote y as the convergence factor of the self-
orthogonalizing FLMS ADF, the relation can
be expressed as [28]

7oomn N

On the other hand, the performance cf the
FLMS ADF has recently been analyzed in
connection with that of the LMS ADF hy the
same authors |33]). The result obrained for the
same steady-state MSE of the self-orthogonal-
zing FLMS ADF and the LMS ADF is given as
the tollowing [35]:

@
1 :
Fy

where v+ is the inpur signal power. In (30),
it is noted that, as mentioned before, the FBLMS
ADF and the LMS ADF can have the same
steady-state MSE for the same «. Consequently,
we can see from (49) and (50} that, given the
values of M and «~{. the overlap-save FBLMS
ADF’s with and without seli-orthogonalization
can have the same steady-state MSE regardless

of L under the following condition:

yooNol

Vaiious reanlte oF Comrarte bl LenTuiny

b T wail e given it sectinn v

C. Utilization of Frequency-domain Informa-

tion in TBLMS Algorithms

In the previous subsections, we have dis-
cussed how we can incorporate some additional
frequency-domain information in BLMS ADF’s.
Due to -he inherent frequency-domain nature of
these problems, we considered the frequency-
weighted BLMS ADF and the seif-orthogonati-
zing BLMS ADF directly in the frequency
domain. However, it can be seen from (36).
(39),(45) and (48) that the resulting modifica-
tion of the frequncy-domain information occurs
before the frequency-domain sectioning opera-
tion #°,, in both cases. Therefore, one can ex-
pect th'at the frequency-domain modification
done in the FBLMS algorithms can be applied
equally in the TBLMS cases. This is because
the TBLMS algorithm has the same term used
for realizing the correlation in the frequency
domain.

Let us consider the overlap-save sectioning
realization.’ We can note from (3b)} and (3d)
that W, is related to sW. via the following
relation:

w, Pu. V' iw. 0l

Therefore, multiplying both sides of (36) and
45)by PuF  and noting Py Pu.o Py we
obtain the {frequency-weighted TBLMS
{FWTBLMS) algorithm and the self-orthogonali-
zing TBLMS algorithm, respectively, as the
following [341]:

Wi W i I, F ’ \».»\»K }"u_; I, (10 o
and
Wi w, ¥ Py, | slﬁ. R BTN A

As a result. we carn conclude that there is no
difference in the performances of the TBLMS

A similar discussion can be made on the overlap-add sectioning case.
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and FBLMS ADF’s. Particularly, the TBLMS
ADF can be made to have the same fast conver-
gence speed as that of the self-orthogonalizing
FBLMS ADF. The concept of different frequen-
cy-weighting on the error signal can also be
applied to the TBLMS ADF. On the other
hand, it can be expected that both TBLMS
and FBLMS ADF’s have similar complexities
[24].

IV. ELIMINATION OF THE CONSTRAINTS
IN WEIGHT ADJUSTMENT OF THE
FBLMS ADF’s

It is known that under proper conditions,
the FBLMS algorithm of (24), which is realized
using the overlap-save sectioning method, can
work without the constraint Pu. » on the weights
[20],{21]. In this section we discuss which
sectioning matrices (or which constraints) in
the weight adjustment of the FBLMS ADF’s
can be removed, thereby reducing two FFT
operations in realization. In doing so, we treat
the overlap-save and overlap-add realization
methods in a unified way based on the properties
of the sectioning matrices. 1t should be noted
that there is no similar concept in the TBLMS
ADF’s.

A. Filter-bank Representation

Unlike the overlap-save realization, the
FBLMS algorithms derived using overlap-add
sectioning in Section TI-C have two terms in the
estimated gradient, In the following we show
that the overlap-add FBLMS algorithms I and I
in (25) and (26) can be expressed as a bank of
two adjustment algorithms, each resembling the
overlap-save FBLMS algorithm. As an example,
we consider the overlap-add algorithm II. We
obtain from (26)
a@h1 Taty Zk‘. e PagtaX, ) - }kj,u Voo

J=0 e

WX e e

Then, defining

K _
i@y 1 Satwo T Eo #Py st a€s) thiia
I
and
k B . 3
w2 Xy VuolaXs ) aes) 36
=0

and from (55), we can realize the overlap-
add algorithm II as the following:

PUC PERTERT - TP ekt Py ih7a

Wiy i@k~ M Paola Ny a8 ! aTh
and

WK L@k M "’\f.o{a-\'x- L aGl, e
where

@o=awo and @, = O, ta7d

A similar result can be obtained for the overlap-
add algorithm I in (25). This filter-bank repre-
sentation will be useful in understanding the
UFBLMS algorithms for overlap-add sectioning.

B. Properties of the Sectioning Matrices and
Alternative Adjustment Algorithms

It is interesting to note that the sectioning
matrices £, , ', and V., have different
properties, S;;ecifically, we can show from
{7),(15),(22b), and (27) that

[";. [ l)_\ﬂ_i\‘ L‘iﬂ.l} " L:“.IJ » \I._\‘!." ‘)'

Therefore, we have from (27) and {58}

Pee o Pay Bl oy and V8L 0

wheren=23475..
Let us discuss alternative realization me-

thods for (24)-(26), in which some sectioning
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operations are reordered. For the case of the
overlap-save sectioning, we can consider the
following (20]:

syt = Puo (sﬁiu"‘us x’»‘se’k.l (8]

Using the identity P, /Py, in(59), we obtain
from (60)

N . .
s@ xs1 = Phao swo+§ HPM.n(sXJ sefJ' Bl

Thus, we can see that (24) and (6 1) are identical
when P, ,.e@,=.@, Thiscondition can be met
by choosing

w, | ¥

sﬂn=0 or sﬂlo=F[ lBE}

N-M .

It is noted that unlike (24), the algorithm of (60)
can converge (to the optimal solution) without
the condition in (62). A block diagram for the
realization of the FBLMS ADF based on the
algorithm of (60) is shown in (34, Fig 1].
Similarly, noting that \@, =.@,,,,@, =0 and
Puoawo —awo and from (253,(26),(57), and (59),
we obtain aiternative adjustnrent algorithms for
the overlap-add algorithms I and 11, respectively,

as
s k+r — i@kt @k 63
where
1@k = Pao o~ tea Ax a6 i64a}
' _ foverlap -~
i@ = Onoliwr 20X 1 28] add 1 (64b )
i@kt = Proliwy mita Xy alic) 1694 )
_ ¢ overlap-
B R 2 AP, PR - add 11 (AGkY

It is noted in (65b) that the algorithm of the
form;@\., - Vi (e, + 2 Xk 1a€k) is DOt possi-
ble, in which case w@y.. — Vs takXi.)1 2 ) since
Vio=0 for nz2.

C. Unconstrained FBLMS (UFBLMS) Algor-

ithms

Based on the representation shown in (63)-
(65), some reduced forms, in which P, , and
U.. are eliminated, can be considered first.
Then, recombining the results according to the
filter-bank property of Section IV-A, we ¢btain
the UFBLMS algorithms as foliows.

Overlap-save

s@Wre1 T sk ! #sz_fksen i66)

QOverlap-add I :

a@xr1 = awk T (g X aek+ai;h——! aby} 67

Overlap-add II :

L :'aﬂx_L.l!‘ian aek";#VM.ff an—laek}l {68)

In a similar way, the self-orthogonalizing ver-
sions for the UFBLMS algorithms in (66)<(68)
can be obtained from (45) and (48). Baged on
the results obtained so far, it can also be shown
that the UFBLMS version of (30) becomes

kuu=s(ﬂk'+'uNE}3Xk{_F_‘sekH. {69‘:

The use of the NTT’s in realization of (69)
yields a BLMS algorithm with further reduced
complexity.

As: a result of removing the constraints,
we can reduce two FFT operations for each sec-
tioning matrix in the fast convolution realiza-
tion of the FBLMS ADF’'s. However, one may
claim that these computational savings will be
traded for less accurate performance. One of
the objectives of Part Il is to investigate this
aspect. It will be seen in Part II that in many
applications, the use of the UFBLMS algori-
ithms vields no significant degradation in per-
formance.
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V. COMPUTER SIMULATION RESULTS
AND DISCUSSION

In this section we present the results of
computer simulation, showing the effects of
different parameter values and different algor-
ithms on the convergence behaviors of the
BLMS ADF’s. Our discussion will focus on the
convergence characteristics of the self-orthogo-
nalizing FBLMS algorithms. The unconstrained
algerithms will be discussed in detail in Part II.

For the computer simulation, we have
simulated the same adaptive equalizer and
channal characteristics used in our earlier work
[35] (see also [431). Several parameter values
chosen for the simulation are as follows: The
input signal-to-noise ratio was 30 dB; the eigen-
value ratio of the input correlation matrix was
21; the input signal power (o}) was 1.001,
and the number of squared-error data used for
computing MSE was 500.

Let us first discuss choosing appropriate
values of the smoothing constant 2 and the
initial values of the power estimates <P, !\
To see the effects of different parameter values
on the convergence behavior, we did computer
simulation of the self-orthogonalizing FBLMS
algorithm given in {(45) and (46). In the simula-
tion, we chose the values of |.P. !/:i to be
I>s for all values of i. As can be seen in Fig. 2
and Figs. 4 and 5 in (35], the use of proper
values for 3 and P, is even more important in
the FBLMS ADF than in the FLMS ADF.
According to the results of the FLMS ADF,
the values of I°, in a relatively broad range were
acceptable. However, it appears from Fig. 2(a)
and (c) that the use of 2= (0.9 does not produce
good transient behavior. When the block length
is large, this problem becomes more serious,
and thus, the transient behaviors deviate signi-
ficantly depending on I°,. The major reason for
this phenomenon is that, unlike in the FLMS
ADF, the frequency-domain power of the
FBLMS ADF is estimated on the block-by-
block basis. One solution to mitigate this block

effect is to use a reduced value of 3 in order to
have faster estimation. According to our simula-
tion results, 3—( .8 would be a good choice.
(We use this value throughout Parts I and IL)
However, a more difficult problem appears to
be how to choose P, We found that given
3, an appropriate value of P, depends on the
values of 7, N and o  Since it is difficult to
design analytically, we use an empirical vatue of

1 . .
Py = 4 ¥N* of which can be a good choice for the

case of L=M. The values of 2.5 and 10.0 in Fig.
2(b) and (d), respectively, correspond to the
empirical P, we mentioned.

We now discuss the results of computer
simulation of different algorithms whose conver-
gence factors are chosen according to (49)-
(51). Fig. 3 verifies the relation between the
convergence factors ¢ and ¥ of the frequency-
domain self-orthogonalizing algorithms, It is
interesting to see that the convergence speed
of the FLMS algorithm has been improved by
using the block-type FBLMS algorithm. (It
should be noted that the learning curve of the
FLMS ADF in Fig. 3 was the best one obtainable
by varying 3 and P, } This improvement will be
explained theoretically in Part Il Fig, 4 com-
pares the convergence behaviors of the two
self-orthogonalizing FBLMS ADF’s using overlap-
save and overlap-add of the two self-orthogonal-
izing FBLMS ADF’s using overlap-save and
overlap-add sectioning methods, respectively.
The overlap-add algorithm is based on (48)
and uses the same convergence factor y as the
overlap-save algorithm does. It is noted from
Fig. 4 that the steady-state MSE of the overiap-
add algorithm is slightly worse than that of the
overlap-save algorithm for the same parameter
values. (This aspect will also be analyzed in
Part 11.)

Fig. 5 verifies the convergence factor rela-
tions in (49)«(51). Also, it can be seen from this
figure that the self-orthogonalization in the
frequency domain significantly improves the
convergence speed of the LMS algorithm, We
also did computer simulation to see the dif-
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ference in the convergence behaviors of the
FBLMS ADF's using the two different power
estimation methods in (46b) and (47). In general,
the FBLMS ADF using the sample average
method in (47) showed very unstable conver-
gence behavior even for moderate values of
e, For example. it does not converge for «=0.01
for which value the FBLMS ADF using a one-
pole LPF converges. The convergence behaviors
for a decreased « =0.001 are shown in Fig. 6.
It shouid be noted from this figure that the
sample average method still shows large variation
(i.e., spurious peaks) in its learning curve, (Note
that both learning curves were obtained by
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ensemble averaging the same number of squared-
error data.) Finally, it is noted that although
the BLMS ADF can be implemented using the
FFT, the stability region of the BLMS ADF is
narrower than the LMS ADF. Specifically,
the convergence factor '« of the BLMS ADF
must be less than 1/{L A,a,: for stability where
Amax 18 the largest eigenvalue of the autocor-
relation matrix. 4., can be, in general, far
greater than 1 when o} | As seen in Fig. 7,
the self-orthogonalizing algorithm which reduces
Amax Significantly improves the stability of the
BLMS ADF.
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Fig. 2. Effects of ditferent values ot 3. {*, and L on
the transient brhavior of the self-orthogonali-
zing FBLMS ADl M=i6, - " Nand o -

UAbL).

ta) # =0.9, L=16 and N=32,
(b) 2 =08 L=16 and N=32,
(¢) 3 =0.9, L=32 and N=64.
(@) 3 =0.8,L=32 and N=64,
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Fig. 3. Convergence behaviors of the self-orthogonali-
zing FLMS and FBLMS ADF’s with different
block lengths (M=16).
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Fig. 4. Comparison of the convergence behaviors of
the self-orthogonalizing FBLMS ADF’s for
different sectioning methods (M=16, L=16,
N=32 and ¢=0.01).
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Fig. 5. Comparison of the convergence behaviors of
the (overlapsave} FBLMS ADF's with and
without self-orthogonalization in the frequency
domain (M=16, 1.=16, N=32 and «} =1.001).
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Fig. 6. Comparison of the convergence behaviors of
the self-orthogonalizing FBLMS ADF’s for
different power estimation methods (M=16,
L=16,N=32. ¥ aXN and «=0.001).
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Fig. 7. A stabilized operation of the self-orthogonali-
zing FBLMS ADF(M=16,L=16,N=32, ¢=0.04
and 4 =1.001).

VI. CONCLUSIONS

Based on a unified matrix treatment, we
have discussed the overlap-save and overlap-
add sectioning methods for the fast convolu-
tion realization of the TBLMS and FBLMS
ADF’s, As a resuit. we have obtained new results
of the overlap-add realization and the number-
theoretic transform realization of the FBLMS
ADF’s, We hav also studied the FWBLMS and
seif-orthogonalizing FBLMS algorithms by form-
ulating them directly in the frequency domain.
Then, it has been shown that the TBLMS ADF
can be made to have the same converpence
behavior as that of the FBLMS ADF. Next.
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we have discussed possible UFBLMS algorithms
in a unified treatment of the overlap-save and
overlap-add sectioning methods. Finally, based
on the resuits of simulation, we have discussed

choosing the value of 2 and the {nitial value

of the power estimates. Our simuiation resuits
indicate that if a proper convergence factor is
used, the self-orthogonalizing FBLMS ADI
can converge (o the same steady-state MSL
regardless of block length and the FBLMS ADF
has improved conveérgence speed compared to
the FLMS ADF.
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