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Time- And Frequency-Domain Block LMS Adaptive

Digital Filters: Part II ~ Performance Analysis

시 간영역 및 주파수영 역 블럭 적응 여 파기 에

관한 연구 : 제 2 부 - 성 능분석

Jae Chon Lee*  Chong Kwan I ii*

* Cornrnunn-aiioiis .?searc!] l.aboratorv
KAcKanct'd Insii >uh* <>f S cienc,1
;ind f'eclnioiogx' P.(Box 15(i,
S eoul, Korca.

숙- 《냥』사시电 IRh
…"W " ■'! 舍 W i 가이 r V

이 재 천, 은 송 관

ABSTRACT

In Part I of the paper, we have developed various block least mean-square (BLMS) adaptive digital 
filters (ADF's) based on a unified matrix treatment. In Part II we analyze the convergence behaviors of 
the self-orthogonalizing frequency-domain BLMS (FBLMS) ADF and the unconstrained FBLMS 
(UFBLMS) ADF both for the overlap-save and overlap-add sectioning methods. We first show that, unlike 
the FBLMS ADF with a constant convergence factor, the convergence behavior of the self-orthogonalizing 
FBLMS ADF is governed by the same autocorrelation matrix as that of the UFBLMS ADF. We 나len show 
that the optimum solution of the UFBLMS ADF is the same as that of the constrained FBLMS ADF 
when the filter length is sufficiently long. The mean of the weight vector of the UFBLMS ADF is also 
shown to converge to the optimum Wiener weight vector under a proper condition. However, the steady­
state mean-squared error (MSE) of the UFBLMS ADF turns out to be slightly worse than that of the 
constrained algorithm if the same convergence constant is used in both cases. On the other hand, when 
the filter length is not sufficiently long, while the constrained FBLMS ADF yields poor performance, 
the performance of the UFBLMS ADF can be improved to some extent by utilizing its extended filter­
length capability. As for the self-orthogonalizing FBLMS ADF, we 아udy how we can approximate the 
autocorrelation matrix by a diagonal matrix in the frequency domain. We also analyze the steady-state 
MSE's of the self-orthogonalizing FBLMS ADF's with and without the constraint. Finally, we present 
various simulation results to verify our analytical results.

요 약
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보였다. 제 2 부에서는 여러 주파수영역 블럭적응 여파기늘 중에서도 수렴속도가 매우 빠른 s시 f-orthog 이 laliz 服 알고 

리즘과 계산량이 대폭 감소되는 비제약 알고리즘의 수렴특성들을 overlap-save 및 블럭데 이타분할방법에

대해서 분석한다. 먼저, 수렴인자가 상수알 때와는 달리. 앞에서 언급한 두 주파수영역 여파기들이 공통의 자기상관 

행렬의 지배를 받기 때문에 수렴특성 분석에 있어서 서로 밀접한 관련이 있음을 보인다 다음으로 여파기 계수의 수 

효가 충분히 클 때, 주파수영역 블럭적응 여파기는 계수적응 알고리즘에서 제약의 유무에 관계없이 동일한 최적해를 

가짐을 보인다. 그리고 나서 비제약 알고리즘의 계수들은 적절한 조건하에서 원래의 제약알고리슴과 같이 동일한 최 

석해에 수렴함을 증명한다. 이에 반하여. 최攵자승오차 관점에서의 성능분석 걸과는 제익籍 풀있을 녕우에 정상상대 

예서 약간의 성능서하가 있음을 밝혀낸나. 안里으로 계中의 十효가 삭을 내는 원래의 제약 일卫리즘은 심한 싱」。서하 

들 초래하는 반면에 비제약 알고리즘■은 제약의 제거들 导해 상대셔旦로 셰수리 彳-효사 증사힌 互과 때분녜 힐신 줗£- 

수렴특성을 가짐을 보인다 또한 self-orthogonalizing 수가수영역 블럭적응 여파기의 자기상관행련이 주가수 영역에시 

대각행렬로 됨을 보여 줌으투一써 효율적으로 수렴시가을 단숙시키는 구현방법임을 뒷받침한다.

I. INTRODUCTION

In Part I of the paper (1 ], we have develop­
ed various block least mean-square (BLMS) 
adaptive digital filters (ADF's) realized using the 
fast Fourier transform (FFT) and the overlap­
save or overlap-add sectioning method. Among 
those BLMS ADF's, the self-orthogonalizing 
frequency-domain BLMS (FBLMS) ADF and 
the unconstrained FBLMS (UFBLMS) ADF 
have some attractive features. For example, the 
former has fast convergence speed, and the 
latter has reduced computational complexity.

The convergence properties of the BLMS 
ADF were studied by Clark. Mitra and Parker 
[2] J 3]. They obtained the optimum weight 
vector, the condition for convergence, the time 
constant (or convergence speed), and the steady­
state mean-squared error (MSE) [2]. These 
results were also compared with those of the 
least mean-square (LMS) ADF [4], thereby 
making it possible to replace easily the existing 
LMS ADF by the BLMS ADF which can be 
implemented efficiently.

The UFBLMS A； 가; using the overlap- 
save sectioning method was introduced by 
Mansour and (；ray j 5 ] . Based on the ahnosi 
sure asymprtic exponential stability of control 

theory, they proved the convergence of the 
UFBLMS algorithm in the context of system 
identification. However, no analytical results 
were presented on the steady-state MSE. Also, 
by computer simulation, the self-orthogonalizing 
UFBLMS algorithm was shown to have fast 
convergence speed. In another paper [6], the 
convergence behaviors of the two FBLMS 
ADF's with and without the con아!Eint were 
compared by computer simulation when the 
number of the filter weights is not sufficiently 
large.

The self-orthogonalizing FBLMS ADF based 
on the overlap-save sectioning method was 
studied by Picchi and Prati [7] .They derived the 
weight adjustment algorithm by minimizing the 
frequency-domain block MSE (BMSE) with the 
constraint on the frequency-domain weight 
vector. In order to realize the cons­
traint, they applied the Rosen's gradient pro­
jection method [8]. However, the convergence 
behavior of the developed algorithm was not 
fully analyzed.

In Part II of the paper, we analyze the 
convergence behaviors of the UFBLMS ADF 
and the self-orthogonalizing FBLMS ADF 
both foi the overlap-save and overiap-add sec­
tioning methods? In doing so. we inverse­

We believe that the inclusion of the overlap-add case will enhance the overall understanding of the convergence beha­

viors of the FBLMS ADF's. However, for a coherent presentation of the results on the convergence analyses, the 

overlap-add case will be discussed separately in Appendix.
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transform the weight vector from the frequency 
domain into the time domain and then follow 
the analysis procedure used in the LMS or 
BLMS case [2],[쉬,More specifically, 
the approach taken in our paper is as follows. 
We first compute the optimum Wiener solution 
that minimizes an appropriate performance 
criterion. We then derive the difference equation 
for the mean of the weight vector in order to 
prove the convergence of the underlying algo­
rithm. From this equation, we can obtain the 
convergence condition and the time constants 
and also calculate the steady-state MSE.

Prior to detailed analysis, we investigate the 
differences in the mean weight-vector equations 
of the BLMS, self-orthogonalizing FBLMS and 
UFBLMS ADF's. We then study the convergence 
characteristics of the UFBLMS ADF's, and ex­
tend our analysis to the self-orthogonalizing 
algorithms. According to the results of our 
analysis, the optimum solutions of the two 
FBLMS ADF's with and without 나le constraint 
turn out to be the same when the filter length is 
sufficiently long. The mean of the weight vector 
of the UFBLMS ADF is also shown to converge 
to the optimum Wiener weight vector under a 
proper condition. On the other hand, when the 
filter length is not sufficiently long, the original 
and uncoil아rained FBLMS ADF's are shown to 
reveal quite different convergence behaviors in 
the steady state. As for the self-orthogonalizing 
FBLMS ADF, we obtain 나le difference equation 
for the mean of the weight-error vector and 
discuss how we can approximate the auto­
correlation matrix by a diagonal matrix in the 
frequency domain. One of the results indicates 
that the self-orthogonalizing FBLMS ADF can 
have superior convergence speed over the self­
orthogonalizing frequency-domain LMS (FLMS) 
ADF which operates on a sample-by-sample 
basis. We also obtain the analytical results on 

the steady-state MSE's of the self-orthogonali­
zing FBLMS ADF's with and without the con­
straint.

Following this Introduction, in Section II 
we briefly discuss the convergence properties of 
the BLMS, UFBLMS and self-orthogonalizing 
FBLMS ADF's. In Section III, we analyze in 
detail the convergence behaviors of the UFBLMS 
ADF. In Section IV, we study how we can 
realize the self-orthogonalizing algorithm in 
the frequency domain. In Section V, we present 
various simulation results to verify our analytical 
results. Finally, we draw conclusions in Section 
VI. In addition, the results of the convergence 
analysis of the overlap-add realization are given 
in Appendix.

II. CHARACTERISTICS OF BLOCK LMS 
ADF's

In this section, we briefly describe the pro­
perties of the BLMS, UFBLMS and self-ortho- 
gonalizing FBLMS ADF's. In our discussion, 
all input data for these ADF's are assumed to be 
stationary and real-valued. As for the BLMS 
ADF, a detailed convergence analysis can be 
found in [2]. In Sections III and IV, we com­
pare the analytical results of the UFBLMS and 
self-orthogonalizing FBLMS ADF's with those 
of the BLMS ADF, which is reviewed in this 
section.

A. Optimum Block Wiener Solution and BLMS 
Algorithm

Assume that an FIR ADF has M weights 
■ wm i and that the filter produces its output 

：yn from the input :'如 and the desired res­
ponse ；(L : . For our discussion here, we use the 
following basic equations which we used in 
Part I3 :

The reason is that, as will be seen in Sections H IV. we can get the physical meaning of the autocorrelation matrix 
more easily from the time domain rather than the frequency domain view point.

A11 the notations used in Part H will be the same as those in Part I of the paper unless otherwise stated.



Time- And Frequency-Domain Block LMS Adaptive Digital Filters: Part II-Performance Analysis

Block MSE

m k 冬]E [ e： Cr ]

Output vector

yk ■ wk

Error vector

ek ― dk Yk

Weight vector

(2 a)

(.2 b;

where

is a convergence factor.
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Vk XkL+ 2 Xkl* Xkl . , •Xkl. M 1
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心- dki. dki,4 1 ,'•clkL，L t
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and

Wk -= ! VVk.o Wk. I … • wk, 서 2 \\'k. 사 I

The optimum block Wiener solution that 
minimizes the BMSE defined in (1) can easily 
be obtained as the following:

B Wopf bRx' B Px

where

hRx.스、Xk Xk i 시id h py 1" X【di

When the signals are stationary, the MxM block 
autocorrelation matrix and Mxl crosscorrela^ 
tion vector in (3) become [2]

1

b Kx LRx and bpx 1-Px ‘丄

where

Rx 厶Xn Xn j . P x A L xn <ln.l •

and Xn 스 丨 Xn Xn - , '"Xn M，i「

Therefore, in the stationary case the block 
solutions are the same as the conventional 
Wiener solutions. That is,

B - W op； and m in " £ m in

where w顷 qR『px and £min is the minimum 
MSE.

With the usual assumption that the signal 
matrix and the weight vector are uncorrelated, 
we can easily obtain the mean of the weight­
error vector for the BLMS ADF given in (2) 
as the following:

匕 i、'k，!」…' Im 以 B Rx i 化:Vk _ Um 42 L Rx / E ： Vk i

'6

where vk=Lwk BwOPf. Based on (6), we can obtain 
the convergence condition and the time con­
stants of the MSE process, and also calculate 
the steady-state excess MSE as follows [2].

, Convergence condition:

2 2
()< # J.广-、........or ()、卩T 冨… l：7

L "max L t r K-x

where is the largest value among the eigen 

values,[人」h, of Rx .

• Time constants:

bf. •- .. ; (in blocks) ( B a■„tf，【.人；!

,……' in samples ■ . 1 ,二 i M . !. 8 b

l .xcess MSi .

R £ A - ■" U lr(BRx/Lj 亦 min

-:以 i r( Rx) £ min :以 M c X £ n)in 《9 
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were tr(Rx)denotes the sum of the diagonal 
elements of Rx and M 食 E [ x 訂

It is noted here that, since both the TBLMS 
and FBLMS ADF's using a constant convergence 
factor p. are exact implementations of the 
BLMS ADF, they have the same convergence 
characteristics as 난lose of the BLMS ADF.

B. Unconstrained FBLMS Algorithm

In Part I of the paper, we have discussed 
two FBLMS algorithms based on the overlap­
save sectioning which are given as

sWk + 1 R sX< (10a)

and

sWk+i ($s +以sXk q ). (10b)

It should be noted that the FBLMS algorithm 
in (10a) is an exact implementation of the 
BLMS algorithm in (2c), whereas the FBLMS 
algorithm in (10b) is not. Expecially, they have 
different convergence behaviors in the sense 
that, unlike the latter algorithm, the former 
algorithm converges to the optimum solution 
only for a special initial condition (i.e., 
= s^o)As will be seen in Sections III-V, when the 
filter length is sufficiently long, the UFBLMS 
algorithm has the same convergence character­
istics as those of the FBLMS algorithm in (10b). 
For this reason, hereafter we represent the 
UFBLMS and FBLMS algorithms using new 
frequency-domain vectors M and m as 
follows.

UFBLMS:

u^k t 1 △ 十以 s次*  u 练. (j 1.)

FBLMS :

K + 1 스 0 k ”以 s A k、Ck / . (I 厶

In (11), the frequency-domain error vector of 
the UFBLMS ADF is given from (33) of Part I 
as

u 电=s d代"Pq. [, s Xk u ©k

Let us discuss the convergence behavior of 
the UFBLMS algorithm of (11) in terms of the 
mean weight vector. Substituting (13) into (11) 
and taking expectation of both sides of (11) 
lead to

E Lu^k+i J = +S E| sX sdk]

--E[s*k  Po,l. sXk] E[1 . '14

In order to see the difference in the convergence 
behaviors between the BLMS and UFBLMS 
ADF's, we inverse-transform both sides of 

(14) and obtain

E[uWk" - E r u wk J + 以丨 E [ SX J dk j - El sXL sXu:

i 伯

where 니% = 卩一’ In (15), the LxN matrix 
sXu is a part of the NxN circulant matrix sXk and 
they are defined from (5) of Part I as

M N -슈

It should be noted here that the size of the time­
domain weight vector uwR in (15) is Nxl: while 
the size of 皿 jn (2c) is Mxl. As can be seen 
from (6) and (15), unlike the BLMS ADF, the 
time-domain autocorrelation matrix of the 
UFBLMS algorithm is given byEfsXj sXujwhose 
size is NxN. The characteristics of this new 
autocorrelation matrix will be studied in detail 
in Sections III and IV.

C, Self-orthogonalizing FBLMS Algorithm

Following the same point of view presented 
in the previous subsection, two self-orthogonalb 
zing FBLMS algorithms using the overlap­
save sectioning method can be considered as the 
following:

II C(*'  k - 1 U S代 * y s S A k U 1 ' 
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and

s^k + i = (s^k 4 7s Ak.1 s Xk s Ck ), (17b)

where s/?k is an NxN diagonal matrix which can 
be estimated using some appropriate method 
[for example, see (46) of Part I] in actual reali­
zation of (17). Here, we discuss the character­
istics of the self-orthogonalizing version of the 
constrained algorithm in (17b). Inserting (13) 
into (17b)s we can obtain the mean of the 
frequency-domain weight vector as

E[s^k+1 j -PM.O E[so)k! ^/Pm.o

I EI sXk $ dk i …E [ s^k H .1. sXk j Hlo L'lsSk J ( ilD

Noting that the last (N-M) elements of the 
inverse transform of sajk are zero, we can get 
from (18)

ELwk + J -ELwJ ^PM.(广'/疽 F

!EisXL dkJ -EUXi Xkj E! wk i i . N

Comparing (15) and (19), one can see that the 
time-domain autocorrelation matrix of the self­
orthogonalizing algorithm is not the same in 
its present form as that of the UFBLMS algo­
rithm. However, we can show from (16) that, 
since $Xu = [. Xk : Xc ； we have for the last term in 
(19)

F丄X： X」E[ wj — EM"% i| Lj''-k J 厂 
() [、•사.

：20l

Thus, the convergence behavior of the self­
orthogonalizing FBLMS ADF is governed by 
the same NxN matrix E ,sXi SXU: as that of 
the UFBLMS ADF. For this reason, in next 
sections we analyze the convergence beluvio/ 
the UFBLMS ADF first and then extend our 
analysis to the self-orthogonalizing FBLMS ADF. 
It is noted that, when the matrix is an
identity matrix, the difference equation of (19) 
becomes that of the BLMS ADF in (6). Note 

also from (6) and (19) that the use of the dia­
gonal matrix in the frequency domain introduces 
another input matrix Xc? which does not appear 
in the weight vector equation of the BLMS ADF. 
The effec of Xc on the convergence behavior 
will be studied in Section IV. The convergence 
behavior of the self-orthogonalizing version for 
the UFBLMS ADF will also be analyzed in that 
section.

HI. CONVERGENCE ANALYSIS OF 
UNCENSTRAINED FBLMS ADF's

As can be seen in (3), the optimum Wiener 
weights are completely determined in the time 
domain by the autocorrelation values of the 
input signal and the crosscorrelation values 
between the desired and input signals. Alter­
natively, they are determined in the frequency 
domain by the power spectra of the input and 
desired signals. It is known that, unless the 
bandwidth of the frequency spectrum is ex­
tremely narrow like a tone, the effective duration 
of the inverse transform of the spectrum which 
is of finite bandwidth in the frequency domain 
is also finite. Therefore, in most applications of 
the ADF in which the signal spectra are of finite 
bandwidth, both the correlation values and 
optimum filter weights approach zero when they 
are sufficiently far away from the center of the 
time origin. In this case, the optimum Wiener 
filter can be approximated by a finite impulse 
response (FIR) filter. Based on this FIR approxi­
mation, we can represent the desired signal as

허O 一 !
dn " S Xn . Wd. i 4 f n (21)

i ‘ 0

where Mo is the number of the model filter 
weights, ：' : and ! f n} is a zero-mean white
noise process that is uncorrelated with ； i,• It 
is noted that the accuracy of the approximation 
can be arbitrarily improved by increasing 
Mo. Consequently, in realization of the system 
whose signals are modeled by (21), the number 
of the weights of the ADF, M, must be greater 
than or equal to Mo to achieve the best per-
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formance. It can easily be shown that under 
the signal model of(21)with the optimum 
Wiener weight vector becomes the model weight 
vector b%끼 = wd, m-iF

In the following, we analyze the convergence 
behavior of the UFBLMS ADF first when M = MO 
and then discuss how the convergence behavior 
will be changed when M〈N。

In the UFBLMS algorithm, there is no con­
straint on the weight vector. Therefore, unlike 
in the constrained algorithm, all the N elements 
of the time-domain weight vector are used in 
computing the output and adjusting the weights. 
To see this aspect more clearly, from (13) and 
(15) we represent the output and adjustment 
algorithm of the UFBLMS ADF in the time 
domain as

yk — sXu uwk

and

u Wk.)ut ws Xu ek .

By splitting into

(22a)

(22b)

(231

we decompose (22) as the following:

Yk xk 1 X e b WR , (24a )

aWs - a Wk - H Xi , (24 b)

tMx.i ■ U \ c ek, !24 (/ j

One can see from (24) that removing the con­
straint on the weights introduces additional 
terms, which are related with in the output 
and adjustment algorithm. Since 1 is generated 
by circular extension of Xh, the additional 
terms incurred above have been called the 
circular convolution effect. In the following, 
we investigate how the circular convolution 
terms affect the convergence behavior. We first 

compute the optimum solution and the mean of 
the weight vector of the UFBLMS algorithm. 
We then obtain various results on the conver­
gence behavior.

A. UFBLMS Algorithm and Its Optimum 
Solution

The optimum weight vector of the UFBLMS 
ADF is derived by minimizing the unconstrained 
frequency-domain BMSE. Alternatively, we can 
obtain the same solution based on the block 
orthogonaiity principle [2]. According to this 
principle and from (11), the optimum weight 
vector, must satisfy

匕[s 又 k u % [ = O . (25.)

We get from (25) the equation for the optimum 
weight vector as

E j_ sXx sdk ； — E I sXk Pq i. sXk ] \26 a.'

or

ELsXt： dkJ …ELsX,： sXu i uWs . (26b)

Also, combining (26b) and (15), we obtain the 
expression for the mean of the weight-error 
vector as

!•' . II v k . ! - Un ft uKx 1 Etu v k 1 艺

where and 니Rx 具
Thus, we can see from (26b) and (27) that 
depending on the properties of the matrix 
uRx. the UFBLMS ADF can have a unique 

optimum weight vector and also the weight 
vector of the filter can converge in the mean to 
the optimum solution independently of the 
initio value of the weight vector ”휴舟 or ■ 
In the n은xt subsection, we investigate the pro­
perties of L1 Rx
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B. Properties of the Autocorrelation Matrix fuRx

Based on (16), we can decompose URX as

„ 时 vt v [ E[XtXj : E[X成j I 
„RX-Ei sxusxui [ El xTxc] 'f

.! bRx R*  1 M 

늬 Ry Rc i N-M 

M N - M

4
When Nz is not zero, though (30b) and (30c) must be slightly modified, the general structure will still be maintained. 

Also, in that case, for a better approximation of u Rx it may be preferable to use Nz previous input data instead of 

zero-valued data [see the footnote 3 of Part I].

It is noted from (28) that URX is an NxN sym­
metric matrix. To evaluate URX, we have to speci­
fy the elements of the L x (N-M) matrix which 
is the lower-right part of the NxN circulant 
matrix sXk . For the ease of analysis, Nz is 
assumed to be zero for which case N드L+M-l.
In this case, Xc is given as

It is noted from (30) that, unlike the matrix 
Rz, both matrices bRx and Kc are symmetric 
Toeplitz, When 们 is very small for / greater 
than a positive integer m, we can neglect those 
terms in the above matrices When M is suffi­
ciently greater than m, bRx reduces to

Ofi 02 ,，Q m 0

P1 0o O1

Ot. O i Oa • Om

Bx == LRx - L , ■ . ♦
■ • .

£*  m Qo O\ 02

O\ Oo O\

0 Qm ' ''02 O i Q o ..

(31a)

XkL + L.-l XkL, h L 2 …L ‘ 2 XkL- 1

Xki.. ， Xrl+L-1 '"XkL . 3 XkL +2

XkL - 서-2 Xrl-. M - I …由아 — XkL * 3

when M >m, N is also far greater than m. In that 
case, one of two csrelation terms both in (30b) 
and (30c) can be neglected. Thus, we get from 
(30b) and (30c)

XkL - ! XkL M L■3 -''XkL . M 1 Xkl. , L

XkL- 1W 1. + 1 - 너 L - 2 '''- M 2 Xkl \

Defining the correlation of the stationary input 
process as oi a E[ xnxnj. from (2) and (29) 
we can compute all the elements of the sub­
matrices bRx, Rc and R/ as the following4:

(bRx)u where ]. Wi. j . (30a.：

《R<■丿 i. j ' ：' \ L \ I J \ ； p ... J, I i j ■ z/ N - ■ I -:> ,

where 1 j M . '

R v . . ! 5 U ； ! ；

where !l"N M and Ii M . D —

<lo Oo a； 〃 ！ a 2 0 2 - ''a m 〃 m

，以Q 1 服，。0 山们

<3-2 2 a」q 1 3-oOq

I

1 a?，。？

a/i cloZ)o &i o)

■ &2Z? 2 a」。】 a（）〃0

and
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a.mOm

R/= L

a/m…a/3 a】。1

。3 a" 2

a"3

• . a% 4

o ；

&m°m

a"3 •• *.
■

0-2 P 2 0-2 P 3 • ♦. '.

aix?i a,(02 a1(o3 由仞

(31c)

where

a/ A 1 — t* OW / 冬 m.
一 L,

When L is sufficiently larger than m, all a； s can 
be approximated as unity. In that case the NxN 
matrix uRx becomes from (31)

Qm '''Pi O\Qo pz m

P\ Qo Qi •. *.  1 \

Pi P\ 伽*■. : 
. - , • •

02

, • , I
:*.  •- 'flm 1

. . L I • J

Pm *.  *.  '• 、' Pm °
. .. 1

Po P\ 02 1

L L 0 Oft Ox 1 Oi
■ • 1 '•

Om …02 P\ po 1 P\ Pt

Pm • • p2 Pa 1,Po pl Pi …Qm

P2 j P\ Po P\ *■

1[01 D\

Qm 1\

0
11
,Qm

0 m

02

P\ 01" Wm Pm … Q2〃iQ。
(32)

Consequently, we can see from (32) that, when 
m《M and m<L, URX becomes an NxN 
circulant matrix. It is known that a circulant 
matrix is diagonalized by the discrete Fourier 
transform (DFT) [ 10]. Thus, we get the eigen­
values i A( I 7.! of uRx/ L as follows [11] 

uRx/L=F「\Ax (F//N)-1 UAX (F/J汗)33：

where F is the NxN DFT matrix and the NxN 
diagnal matrix uAx is defined by UAX 厶 diag

(uA1,uA!,---,uAn-1, uAn) . In (33), "Al are 
determined by the DFT of the first column of 
느Rx/L as the following:

m
u人i = £。z expl 一j 2 jt/ (i 1) /N I—(=0

m
Zj Pi expl — j 2 tt (N - /) (i • 1 ) /N ; (341

==% + 2 Scosl 2 (i— 1)/N 丨，<N .I = 1

On 나le other hand, when m<M, the MxM matrix 
bRx can be approximated by an MxM circulant 
matrix as was done in [9]. In that case, we get 
the eigenvaluesof B Rx/L as the following:

A, = S oi expl 〜-j 2 刀"(i - 1 ) /M I 丄习 1=0 /=1

Oi exp) - j '6 .. (M —/) (i ■■ 1 ) /M ! ;3■:

=Qo + 2 Zj oi cos! 2 7tI (i - 1) /M \. 1 <i WMZ = 1

It is noted from (34) and (35) that 0 也i and 
i uA> i I represent the M-point and N-point, 
respectively, power spectra of the same input 
random process ' xn ； . For example, when N=2M, 
the even-numbered frequency components (or 
eigenvalues) of 나 Rx are the same as those of 
bRx, i.e., u人l<i<M [see (34) and 
(35)]. The odd-numbered ones are generated 
>y interpolating the values !人丄 Thus, if M>m,the 
M-point power spectrum already has sufficient 
frequency resolution because the number of 
zeros appended is N-(2in+l). Hence, even in the 
N-point power spectrum which has increased 
frequency resolution, there will be no spurious 
peaks and valleys which did not appear in the M~ 
point spectrum. Therefore, we can see that the 
eigenvalue distributions of the two matrices 
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(uRx and bRx are asymptotically the same 
except for the different number of eigenvalues. 
For example, uA max = A max and uA m i n = A m in

C. Convergence Properties of UFBLMS Algo­
rithm

We are now ready to solve the optimum 
solution and study the convergence behaviors of 
the UFBLMS ADF. According to the results 
obtained in the previous subsection, the matrix 
uRx is nonsinguiar as bRx is nonsingular. Thus, 

we can solve (26b) for u However, our 
concern here is how the Nxl weight vector 
^opt is related to the Mxl weight vector b . 

Based on the signal model in (21) and when 
M = M°, we can show that

dLXwd+fk 囲

where

KL f kL + i …$ kL i L 1 广

Inserting (36) into (26b) yields

uRx uW0P^ElsXJ Xk] wlE 吴 X」Xk ! B wypf,嘴 

to the fixed-coefficient digital filter. It has 
already been shown in [ 12] that, unlike in fixed- 
coefficient digital filtering, the overlap-save im- 
호lementation requires less computation for the 
BLMS ADF than the overlap-add implementa­
tion. Adaptive realization of an ADF using 
appropriate desired signals enables the self­
constraining operation.

We can get from (27) and Section III-B 
the convergence properties of the UFBLMS 
ADF as follows.

• Convergence condition:

2 2
()〈卩 <.«----------- or () 、 7----

L uA max Lir uKx)

• Time constants:

uri 、」 -1 in samples). IWi 鱼N
i

• Excess MSE:

二=:f f (uRx / L 丿 uf min = : uNoW Emin . *42

i- z

Splitting the Nxl vector uwopr into two sub­
vectors awopt and ,WOP,. we get from (37)

R [ I M 0 (38i
u x丨 顷如 I、山

Thus, we obtain from (38) the optimum solu­
tion of the UFBLMS ADF as

a% opt h opt and 0.

Also, one can see from (39) that the minimum 
MSE of the UFBLMS ADF. * m1(1. is the same 
as that of the BLMS ADF,淮mm The optimum 
solution of (39) indicates that when M
circular convolution effect occurs even without 
the constraining operation on the weights. This 
is another unique feature of the ADF compared 

Comparing (9b) and (42), one can see that the 
UFBLMS ADF can save two FFT operations at 
the expense of the slightly increased steady­
state MSE when the same convergence constants 
are used in both cases. As will be seen in Sec­
tion V, this increase is not significant. For 
example, according to (9b) and (42), the dif­
ference in the steady-state MSE's between the 
two cases is about 0.3 dB when - 0.01, M그 16, 
N=32, and 宀 1.

D. Circular Conv이ution Effect

So far we have discussed the convergence 
behaviors of the UFBLMS ADF when
we consider the case whenM <MoIi is clear that, 
when M<Mo,the optimum solution of the BLMS 
ADF, , is a truncated version of wd. Also, 

Bmtn increases because of the truncation of the 
optimum weight vector. In the following, we are 



64 The Journal of the Acoustical Society of Korea, Vol. 7, No, 4 (1988)

going to discuss how the UFBLMS ADF works in 
this situation. The output of the UFBLMS ADF 
is given from (22a) and (23) as

It is noted from (29) that, since Xc is the cir­
cular extension of Xk, in each row of Xc there is 
a jump in the time indices of the input data 

s xn I .To see ' the effect of the assumption on 
M <MO, we schematically draw the njatrix sXuand 
the vector uwK in Fig. 1. In Fig. 1 the jump is 
represented by the diagonal solid line in Xc • As 
can be seen in Fig. 1, in the BLMS ADF, only 
the first M (<MO) elements of the time-domain 
weight vector can have nonzero values. Recalling 
the results in the previous subsections, the 
UFBLMS ADF in this situation will try to opti­
mize its performance by utilizing the first M0(>M) 
elements of the vector, while the last N — Move­
ments will approach zero values. It is, therefore, 
important to see how the Mo—M weights, ewk, in 
the middle of 나 林 in Fig. 1 affects the con­
vergence behavior of the UFBLMS ADF. One 
can see from Fig. 1 that the matrix xR with its 

size (L 1. Mo M) )xMobecomes the lower part
Xk when M - M(1. As for the matrix Xk with its 

size(MfJ the time index of the data in the
last Mo M columns is not continuous, and parti- 
culary in tach row of Xk two data being apart 
by N sampling times are undesirably wrapped 
around. Therefore, the existence of non-zero 
邯命 will help improve the performance in the 
last L —(M° —M) output samples, whereas in the 
first Mo -M output samples it will not. However, 
to reduce the overall block MSE, the 이 weight 
vector wk AIB Wr ■ e p will try to be close to 
the optimum weight vector, b for the case of 
MlIt can also be seen that,unlike for the 
first Mo M output samples, the MSE of the UFB­
LMS ADF for the last L- -M^output samples 
will be significantly improved compared to that 
of the BLMS ADF. All these phenomena will be 
demonstrated by computer simulation in Section 
V.

It can be seen from Fig. 1 that, given Mo,the 
undesirable wrap-around (or circular convolu­
tion) effect increases and propagates from the 
first output sample toward the last output 
sample in each block as M decreases to 1. Thus： 

N

(a )

Fig. 1. A schematic representation of the circular 

convolution effect when Mo.

，히 sXu - [X* M L.
M \ M

!(wk 上"t O '

s'os 
- 

M
，o 트

，-I

드

w

I 을

(b)
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unless the input has special characteristics (for 
example, periodicity) to avoid the wrap-around 
effect, the worst performance of the UFBLMS 
ADF yields when M=1. Assuming () we can 
easily see that the case with M=1 leads to a 
special structure of the UFBLMS ADF in which 
N=L. In addition to the removed constraint in 
weight adjustment, the sectioning operation 
for computing the output is also eliminated in 
this structure since - h and thus yk - F ! 
(sXkuSk). This UFBLMS ADF is the same as 
the structure studied in [ 13]-[ 18]. As discussed 
above, this structure cannot be expected to show 
good performance in most applications because 
of the serious wrap-around effect. One possible 
use of the UFBLMS ADF with M=1 would be 
in the adaptive line enhancement (ALE) applica­
tion. According to our results of computer 
simulation, even in the ALE, this structure 
appears not to show good performance unless 
the time lag N-l is some multiple of the period 
(in samples) of the input sinusoid and the signal- 
to-noise ratio (SNR) is high. In Section V, we 
will also present some results of computer 
simulation, illustrating the performance charac­
teristics of the UFBLMS ADF in △ -step linear 
prediction applications. According to these 
results, the first M elements of the time-domain 
weight vector of the UFBLMS ADF have the 
same information about the signals as that of the 
constrained algorithm.

IV, CONVERGENCE ANALYSIS OF SELF­
ORTHOGONALIZING FBLMS ADF's

The self-orthogonalizing algorithms of the 
LMS-type ADF's have been known to have 
fast convergence speed without altering the 
optimum Wiener solution I I - In this section, 
we first discuss how we can implement m the 
frequency domain some self-orthogonalizing 
algorithms for the UFBLMS ADF and then 
extend our discussion to the constrained algo­
rithm.

A. Self-orthogonalizing Agorithms for UFBLMS 
ADF

In Section III. we have shown that the 
convergence behavior of the UFBLMS ADF is 
governed by the matrix URX and it can be ap­
proximated as a circulant matrix which is dia­
gonalized by the DFT. Since the inverse of a 
circulant matrix can be computed relatively 
easily in the DFT domain, we can consider a 
self- orthogonalizing algorithm in which the 
mean of the weight-error vector is given as 
[9],[19]

(In Tj L u Rx1 uRx') E[uvkl 1.4 .J：'

when is a convergence cqnstant. Referring to 
the approach taken in Section III-A, we can 
derive the UFBLMS algorithm which corres­
ponds to (44) as the following：

. 1 亠 T 以丨 F(uRx/L) ' F 1 i SX uek. (.451

Combining (33) and (45), we finally get a self­
orthogonalizing UFBLMS algorithm as

11 + 1 ~~ u^k 十?/uAx s Ak u - i4bi

As done in [9], the NxN diagonal matrix x
can be computed by first estimating the input 
autocorrelation values i oi 1%), and then com­
puting either the FFT of the N-point sequence 

丨伽，们，…，Om,0, z>m, I or the eigen­
values represented by (34).

Next we discuss anothe호 possible self­
orthogonalizing algorithm which is given by

以"七，1 sXk :Mk (47'

where g is an NxN diagonal matrix and de­
fined by sRk 스 E i $ Xk $ Akj The motivation 
behind the self-orthogonalizing algorithm in 
(47) is that the self-orthogonalizing diagonal 
matrix can easily be obtained using the 
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transformed input s which is already available 
independently of the self-orthogonalization pro­
cess. To see how the above self-orthogonalizing 
algorithm works, we derive the mean of the 
weight-error vector from (17a), (27) and (47) 
as

E[ueU = (L —八Rk' uRx ) E L u vk.] (48)

where sRh AF 1 sKkE. Since sAk」FsXk E 1 
from (3a)；of Part I, we can show from (47) and 
(48) that

sRk F 1 EM彳… 源

Comparing (28) and (49), one cannot easily 
see whether the adjustment algorithm described 
by (47) and (48) is a self-orthogonalizing algo­
rithm since sRk in its present form is not the 
same as uRx . However, in the following it will 
be shown that sRk can be approximated and 
obtained by multiplying URX with a scalar con­
stant.

We can see from (49) that, since sXk is 
circulant, sRk is also circulant and symmetric. 
To compute sRk according to (49), we must 
specify all the elements of sXk which is re­
presented by four matrices Xa, Xb, Xc and Xk. 
Since Xk and Xc are described in (2) and (29) 
when Nz = 0 , we specify the elements of the 
(N-L)xM matrix Xa and (N-L)x(N-M) matrix 
Xb as the following:

XkL ；M-1 ■ Xkl. + I. -1 ■■,Xki. M L 2 XkL M !.

Xk 1. M 2 Xk[ M l •■■Xkl M I - 3 Xkl. 서 I.

XkL M- 3 ■ Xri. - M - 2 ■■■Xkl. 서 L 4 XkL M 1.

XkL 2 Xkl. - 3 '"Xki. . I 1 XkL

Xkl. 1 、:kl. 2 '.'Xkl. -■ M - 1 XkL

and

Xkl.- M - L Xki. - M - 1, t ! ■ ,' 'Xrl m 3 W. M

Xr[. m - L. 1 Xkl. M - 1- ■ ■"XkL M-4 Xkl. M -

Xkl. M - 1.- 2 Xkl.- M-l.-l M-5 XkL-■M-

XkL + l.-3 Xkl.- [. - 4 -■ -Xkl. XkL -

XkL+ L - 2 XkL t L. - 3 ■•,Xkl.，1

We can now compute the elements of from 
(2),(29),(50) and (51) as

!..sRk " j = (N -■ I i - j i) «!< I i j ,

1 冬 时

Following the same approximation of :们！ used 
in Section III-B, we can approximate sRk as 
follows. When m<N. the elements in (52) can 
first be approximated as

(N- i i - j I -j. ,()W；丨 i j ; Me 
，Rk)i,j 〜，一 a, N -- m < ! i - j j < N - 1

0 , otherwist'

Defining a new constant 匕 as

b, A 1 一』0 </ Wm,
N,

we can alternatively represent (53) as

I N b"， 0 i i j ! m

I.S Rk) N Bn . ,■ A ZJx \ III - - 1 j : N - 1
(), otherwise.

When N , since b；:二 Ifor I 1,7,m, we can 

further approximate (55) as

N 妇 a , 0、二 i i j !
' s .j!, j N zjn ； j. . N m 土 ■ i I !'二 N 1.

(), otherwise.

Comparing (32) and (56) , we obtain

sRh : „Rx.
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It is noted here that the values of Mand 
m are determined by the signal characteristics. 
Therefore, once M and m are given, better ap­
proximations of both matrices URX 쵸nd sRk are 
obtained for larger values of L. This is because, 
as L increases, N increases and thus the validity 
of the assumption of m《N becomes better. 
Obviously, given M and m, the FLMS case (L=l) 
results in the worst approximations of “Rx and 

s Rk
Substituting (57) into (48), we finally get

E[uVk + J - (In- / L uRx1 uRx) E I uVk'l 拓

Based on (44) and (58), we obtain the expres­
sions for the excess MSE's of the two self­
orthogonalizing UFBLMS algorithms as

It is noted here that the result on the excess 
MSE in (60) is independent of the block length 
L. Comparing (42),(59) and (60), we can have 
the relation of the convergence constants of the 
UFBLMS ADF's for the same steady-state MSE 
as

7 ' t) N - . 561：

In an actual implementation of the self­
orthogonalizing UFBLMS algorithm described in 
(47), sKk must be estimated in an appropriate 
way. It has been known that the self-orthogonali­
zing algorithm using a single-pole LPF for estima­
tion of $Rk significantly improves the conver­
gence speed 이 On the other hand,
since the algorithm in (47) is based on the rela­
tion between sRk and yRx in (57), the conver­
gence behavior depends on the accuracy of the 
approximations of sRk and UHX As noted 
earlier in this section, they can be approximated

67

better by processing the signals on the block- 
by-block basis rather than on the sample-by­
sample basis. The improved convergence speed 
of the self-orghogonalizing FBLMS ADF over 
the self-orthogonalizing FLMS ADF has been 
demonstrated in Part I of the paper. It is noted 
here that in the UFBLMS ADF with M느 1 [13]- 
[⑻，the two matrices sRk and are exactly 
the same. However, as discussed in Section III-D, 
this structure suffers from the circular convolu­
tion effect [20]

B. Self-orthogonalizing Algorithms for Con­
strained FBLMS ADF

We have shown in Section II-C that the con­
strained algorithm is derived from the UFBLMS 
algorithm by placing the constraint on the weight 
vector. Thus, constrained versions of the two 
self-orthogonalizing FBLMS ADF's shown in 
(46) and (47) can be considered as the following:

We first discuss the convergence behavior of the 
algorithm in (63). The mean of the time-domain 
weight vector of the algorithm in (63) can be 
obtained from (19),(20),(26b),(39) and (48) as

EL wk + 1 I - E[«k] T’Pm,

Thus, we get from (64) the mean of the weight­
error vector as

I r ., I 1
El vk., j -ELvx.) 7 Pm, sRk' JR*  I "打j (65

Substituting of (5，) into (65) leads to

Ef vk.ti ； --ELvh j y PM, URX' URX ('广"1
：\ I () I

-(L, 7 L. \ K,)E「vJ.
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Similarly, we can obtain the mean of the weight­
error vector of the algorithm in (62) as

E[vk+1>E[vJ-7；PM, LUR-- URX[玖* 』]

=(Im - 〃LIm) E [ vk], (67)

Thus, from (66) and (67) we obtain the excess 
MSE's of the self-orthogonalizing constrained 
FBLMS algorithms in (62) and (63) as

1 w
£△=并 Mdin (68)

and

1 1 w 、
£△=分■ 7 M Memin, (69)

Consequently, comparing (9b),(42),(59),(60), 
(68) and (69), we can see that all the constrained 
FBLMS algorithms have slightly less steady­
state MSE's compared to the corresponding 
UFBLMS ADF's. The increased excess MSE 
of the UFBLMS ADF is attributed to the increas­
ed effective filter length N in comparison to M 
of the constrained ADF. Also, we can see 나le 
relation in (61) among the convergence con­
stants applies to both cases of the FBLMS ADF's 
with and without the constraint. The analytical 
results on the steady-state MSE's of the self­
orthogonalizing constrained FBLMS ADF ob­
tained in this section have been demonstrated 
by computer simulation in Part I of the paper.

V. COMPUTER SIMULATION RESULTS AND 
DISCUSSION

In the previous sections (and appendix), we 
have analyzed the convergence behaviors of the 
unconstrained and self-orthogonalizing FBLMS 
ADF's. In this section, we present the results of 
computer simulation to verify the analytical 
results obtained previously. For our computer 
simulation, we considered three application 
examples; adaptive channel equalization, adap­
tive echo cancellation, and adaptive spectral 
line enhancement. The adaptive equalizer used 

here is identical to that in Part I. For the adap­
tive data echo canceller, the adaptive structure 
shown in [21, Fig 1 ] was chosen along with 
the echo canceller response in [21, Fig. 2] 
The input of the echo canceller was random 
binary data and the variance of the noise added 
at the output was 0.001. On the other hand, the 
厶-step adaptive structure in [22, Fig 1 ] was 
used for the simulation of the adaptive line 
enhancer (ALE). In our simulation, the decor­
relation delay J was set to be unity and the 
input SNR was -6 dB.

To see the effects of self-orthogonalization 
and removing the constraint on the convergence 
behaviors of the FBLMS ADF's when the filter 
length is sufficiently long, we did simulation of 
the adaptive equalizer mentioned above. The 
results are shown in Figs. 2 and 3 for the cases 
with and without the constraint and the self­
orthogonalization operation, respectively. We 
can see from all those figures that, as analyzed 
previously, the MSE's of the four unconstrained 
algorithms increase slightly in comparison to 
the corresponding constrained algorithms. We 
can also note that the comparison of the FBLMS 
ADF's with and without the self-orthogonali 
zation in the frequency domain reveals two 
distinctive characteristics, one in the transient 
period and the other in the steady state. We 
used the same values chosen in Part I for the 

algorithm, the unconstrained 
an overshoot in the transient 
the cases of the overlap-save 
sectioning methods. There-

initial estimate of the self-orthogonalizing matrix 
for the cases shown in Fig. 3(a) and (b). Unlike 
the constrained 
algorithm shows 
period both for 
and overlap-add 
fore, an increased initial estimate must be used in 
the unconstrained algorithm which is more 
likely to become unstable because of its in­
creased effective filter length. On the other 
hand, unlike in the case of the constant con­
vergence factor, the self-orthogonalizing algo­
rithms realized using overiap-add sectioning show 
increased steady-state MSE's as compared to 
those realized using overlap-save sectioning
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(a) (b)

Fig. 2. Comparison of the convergence behaviors of 

the FBLMS ADF's with the same convergence 

constant 卩 for the cases with and without the 

constraint (M=16, 16, N = 32, 〃 = a/M,

ai 1.001 and a =0.015).
(a) Overlap-save sectioning .

(b) Overlap-add sectioning.

Fig. 3. Comparison of the convergence behaviors of 

the self-orthogonalizing FBLMS ADF's for the 

cases with and without the constraint (M「16.

L二 16/ N 二32, 8 - 0.8, y-aNand o =().() 15 ).
(a) Overlap-save sectioning,

(b) Overlap-add sectioning.

To verify our discussion in Section III on 
the convergence characteristics of the uncon­
strained algorithm when the filter length is not 
sufficiently long, we did computer simulation of 
an adaptive echo canceller. In Fig. 4 we first 
show what values the weights ot the FBLMS 
ADF怎 with and without the constraint have 
eventually in the steady state. We can see from 
Fig. 4(a) and (b) that, unlike the constrained 
algorithm, some of the last (N-M) weights of the 
unconstrained algorithm are not zero in the 

steady state, although the first M weights of the 
two filters are about the same. Comparing Fig. 
4(b) with the original echo channel response, 
it turns out that they are very close to each 
other [21 ]. In Fig 5 we ^iow the MSE behaviors 
of the same ADF's. We can see from this figure 
that, as discussed in Section IIL the unconstrain­
ed algorithm reveals degradation in MSE in the 
beginning of the block due to the circular con­
volution effect. However, in the rest of the 
block, the MSE performance is significantly
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Fig. 4. Comparison of the steady-state weight values of 

the FBLMS ADF's with and without the con­

straint when the filter length is not sufficient 

(M=32, L = 32, N = 64, and ^=0.01)
(a) Constrained algorithm.

(b) Unconstrained algorithm.

Fig. 5. Comparison of the MSE's of the same FBLMS 

ADF's used in Fig. 4.

(a) Overall convergence behaviors,

(b) Convergence behavior of the UFBLMS 

ADF in the 30th block.

improved by having nonzero values after the 
Mth weight. Consequently, in that way the 
unconstrained algorithm minimizes the overall 
block MSE which can be much less than that of 
the constrained algorithm.

Finally, we discuss the results of computer 
simulation of the ALE with △=] . In Fig. 6(a) 
and (b), we show the time-domain weight values 
of the two FBLMS ALE*s  in the steady state. We 
see from this figure that the UFBLMS ALE 
has a very large peak in its time-domain response. 
The reason is as follows. Based on the represen­
tations of the output and data matrices shown 
in (43),(2) and (29), respectively, the desired 

response vector of the UFBLMS ALE with 厶 드1 
is given as dk = [xkL*i  xrl + 2".l 1 xrl+lj1 .
Thus, we can see from (29) that the last column 
of Xc is almost the same as dx. Consequently, 
we can see from (43) that, to minimize the 
MSE between yk and dk , the last element of 
the weight vector uwk must be very large. 
However, it is interesting to see from Fig. 6(a) 
and (b) that the first M weights of the two ALE's 
appear to have similar information. Those 
weights are different only by a scale factor. 
This aspect can be seen more clearly in the 
frequency responses of Fig. 6(c). As an extreme 
case of the UFBLMS ALE, we can consider the
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Fig. 6. Comparison of the steady-state performances 

of 아le FBLMS ALE's with and without the 

constraint (M=32, L=32, N=64, P 끄0,0001 

and the normalized frequency of the sinusoid, 

L =0.1).

(a) Overall N time-domain weight values

(b)

(b) First (N-l) time-domain weight values

Fig. 7. Frequency responses of the UFBLMS ALE 

with M=1 for different frequencies of the 

input sinusoid (M=l> L=64, 13=64 and “产 

0.0001).

(a) "= 0.1 (b) fo-0.125

case when M=1 and thus N=L, which is the same 
structure as that studied in [13]-[18]. The 
frequency response of the first (N-l) time­
domain weights is shown in Fig. 7(a). As noted 
in Section HI, the performance, however, appears 
to be unsatisfactory. As can be seen in Fig. 7(b), 
the frequency response may be improved for a 
different input frequency because of the periodic 
nature of the sinusoid when the input SNR is 
high. It is noted that all those frequency res­
ponses of the UFBLMS ALE discussed so far 
have been obtained by removing the peak in the 
time-domain response. This means that in the 
ALE's we cannot expect the same computational 
saving that has been gained in other applications 
by removing the constraint on the weights.

(c) Magnitude frequency responses of the 

wekhts in (b). VI. CONCLUSIONS
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In Part I of the paper, both for the cases 
of the overlap-save and ove미ap-add sectioning 
we derived the unconstrained algorithms from 
the alternative structures which cannot be ob­
tained directly from the original BLMS ADF. 
The reason for doing so was as follows. Accord­
ing to our simulation result, unlike the con­
ventional FBLMS ADF derived from the BLMS 
ADF, both the alternative and unconstrained 
FBLMS ADF's always converge to 반optimum 
Wiener solution for any initial values of the 
frequency-domain weight vector. In Part II 
we have shown that the UFBLMS ADF is basi­
cally a frequency-domain problem for which 
case the optimum solution must be formulat­
ed directly in the frequency domain. Also, it 
has been shown that the autocorrelation matrix 
governing the convergence behavior of the 
UFBLMS ADF's is approximately a diagonal 
matrix in the frequency domain (or a circulant 
matrix in the time domain) both for the cases 
of the overlap-save and over-lap-add sectioning. 
Furthermpre, we have shown that the conver­
gence behavior of the self-orthogonalizing 
FBLMS ADF with the constraint is governed 
by the same autocorrelation matrix as that of 
the FBLMS ADF without the constraint. There­
fore, we believe that the UFBLMS ADF must 
be conceived as an independent problem and 
thereafter a constrained version of the UFBLMS 
ADF could be considered as a special case with 
the constraint on the weights if it is necessary 
such as in the zl-step linear prediction.

In this paper, we have analyzed extensively 
the convergence behaviors of the UFBLMS and 
self-orthogonalizing FBLMS ADF's realized bas­
ed on overlap-save sectioning. According to the 
results of our analysis, the optimum solutions of 
the two FBLMS ADF's with and without the 
constraint are the same when .The mean 
of the wei않it vector of the UFBLMS ADF 
has also been shown to converge to the op­
timum solution regardless of the initial values of 
the frequency-domain weight vector. It has been 
shown by analysis that the steady-state MSE of 

the UFBLMS ADF, however, increases slightly 
in comparison to the constrained algorithm when 
the same convergence constant is used in both 
cases. On the other hand,when M<Mo, the original 
and unconstrained FBLMS ADF's have been 
shown to reveal quite different convergence 
behaviors in the steady state. It has been found 
that, when M<Mo, the UFBLMS ADF suffers 
from the circular convolution effect in the 
first M - -M.o output samples in each block. How­
ever, in the rest output samples in the block, 
while the constrained algorithm yields poor 
performance due to the insufficient filter length, 
the performance of the UFBLMS ADF is im­
proved significantly by utilizing its extended 
filter-length capability. As another new re­
sult, we have shown, by computer simulation, 
that the UFBLMS ADF used even in the adap­
tive line enhancer application has the same in­
formation about the signals as the constrained 
algorithm does. Consequently, in most applica­
tions the use of the UFBLMS algorithms yields 
no significant degradation in performance.

As for the self-orthogonalizing FBLMS 
ADF, we have 머udied in detail the properties 
of the autocorrelation matrix and the self­
orthogonalizing matrix. As a result, we have 
shown that the two matrices can be approximat­
ed such that they differ only by a constant 
scale factor. It has also been shown that the 
accuracy of the approximations of these matrices 
can be improved when the block length is suf­
ficiently long. This result verifies why the self­
orthogonalizing FBLMS ADF can have superior 
convergence speed over the self-orthogonalizing 
FLMS ADF which operates on a sample-by^ 
sample basis. In addition, we have obtained the 
analytical results on the steady-state MSE's 
of the self-orthogonalizing FBLMS ADF s 
with and without the constraint and 봄wifieC 
the relations among the convergence factors that 
were suggested in Part I. Finally, in Appendix 
we have analyzed the convergence behavior of 
the overlap-add implementation. According to 
the result obtained, it has been found that the 
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excess MSE of the self-orthogonalizing FBLMS 
ADF using overlap-add sectioning is larger than 
that of the overlap-save implementation for the 
same convergence constant.

APPENDIX

Convergence Analysis of FBLMS ADF's 
Realized Using Oglap-add Sectioning

In this appendix, we analyze the conver­
gence behavior of the overlap-add I implementa­
tion developed in Part I of the paper. This 
appendix together with Sections III and IV 
which dealt with the convergence behavior of 
the overlap-save implementation will provide a 
unified theory on the convergence behaviors 
of the FBLMS ADF's realized based on the fast 
convolution.

A. Unconstrained Algorithm

The frequency-domain error vector of the 
overlap-add implementation is defined from 
(37) of Part I as

u 스 adk — ! t o a A k ' Ql. 0 a * k ； > u k i 〔 A . 1 ;

The pair of the FBLMS ADF s based on overlap­
add I sectioning is given as

iWkti (aXk - a Ak .! uek ) (A. 2 j

and

a^k-t 1 ~ 0 i 担〔a-1 k 强、a A k ... j a \ ( A . 3

where 槌玮ueR. The optimum weight vector 
睥如玖 of the UFLMS ADF in (A.2) must satisfy

Substituting( A 1)into ( A 4) yields

欢 H"成 (A. 5 ；

J E L (a-Xk o * a A^k- I Q L,*  > ' /?L.o aAk -r Q l,o a Ak. i 

Converting all the variables from the frequency 
domain into the time domain, we get

E[(aX^ PL.O(A. 6)

- ER aX^ P L.O 外 aXk- I Sm -1,0) (Pl, q a Xk亠 Ql, o a Xi 

u W。仅,

Using the definitions of aXk, PL,o and Ql.q, we 
can show that

Pls aXk + Q,.。aXs =| 当「 (A. 7)
L O 」n-i..

Thus, we get from (A.6) and (A.7)

L s Xu dkE, L s Xu $ Xu j u wgf , v A, b /

Comparing (A.8) and (26b), we can see that 
the optimum weight vectors of the two UFBLMS 
ADF's are the same both for the overlap-save 
and overlap-add I implementations. In other 
words, the overlap-add I implementation in 
(A.2) is another exact implementation of the 
system described by (22a) and (22b). Con­
sequently, the same results on the convergence 
behavior obtained in Section III apply to the 
overlap-add implementation with a constant 
convergence factor as well. However, it will be 
seen in the following that this is not the case 
when the weight-adjustment algorithm is modi­
fied using the frequency-domain self-orthogonal­
izing matrix.

B. Self-orthogonalizing Algorithm

We discuss the following self-orthogonalizing 
algorithms in order:

and

ak t i •/七1, g i k ) \ a k a Ar i a A « ... i a

(A. 10) 
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where the NxN diagonal matrix a7?k is defined 
as &Rk AE[aAx 0」. Following the same ap­
proach as used in the previous subsection, we 
can get the following for (A.9) as

E[uwr+1] =E[uWk] -F/E[ (aRk1aXiPL,o +

+ aRk\ aXLi SM_b0) (A. 11)

1 &dk — ( Pl,o aXk + Ql, o aXk-i ) uI〕

where

aRk aF 1 F ■

when 奴=XkWd + we can show that

dk = sXu [ 므-] +h = sXuuW函 +如 (A. 12)

Combining (A.7), (A.8), (A.l 1) and (A. 12), 
we obtain

E[uVk+i] = (IN—/Rv)E[uvJ (A. 1 ■)

where

Rv 旋：[(aRk1 aXk Pl,o + aRkiiaXk-i Sm-i,o)

(PL, o aXk+ Ql,o aXk-» )].

Expanding Rv into two terms leads to

RvfRb E[axi Pl,o(Pl,o aXk + QL,oaXK_1)](A. 14)

+ aRl'i E [aXk-i (Pl,o aXk + Ql,o aXk-i)].

Noting that the correlation values between 
input samples of the different blocks are very 
small when L》m, we can approximate Rv in 
(A.14) as

Rv = &R： E[ (Pl,。aXQt (PL,oaXk)J 十

E[(QwaXkT)t (QiwaXi)] . (A. 15)

In the steady state, Rv becomes

Rv^aRk1 E[( PL.0aXK)t(Pl,.oaXk) I (QmaXk—Q

(QL.aXx-Oj (A. 16)

= aR： E[(PL,aXQt (PL,aXk) + (QL,aXk_1)t

(Ql, aXk-1 )].

Denoting aXk △[ g …，we can modify (A.16) as

Rv = aR『 E[A*  A+B*B]

= aR『 E[[ 스] [ ]=&R『Eq歸X」.

(A. 17)

We finally get from (A.13) and (A.17)

E[uvk+J] = (In-aRK)E[uvk], (A. 18)

Consequently, the excess MSE of the self­
orthogonalizing algorithm in (A.9) is given as

1 N
uE=万 7 匸 £mm . (A. 19)

As for the constrained self-orthogonalizing
FBLMS ADF of (A.10), we can get

E[\「k + 1] = E[vk] —7 Pm, aRk1 aRk[ ] 허 

L O j N-M

=E[vk] (A. 20)

Thus, the excess MSE of (A.10) becomes from 
(A.20)

1 M 
2ZL£min- (A. 21：

Comparing (A.19) and (A.21) with (60) and 
(69), respectively, we can see that the excess 
MSE*s  of the self-orthogonlizing FBLMS ADF's 
realized using overlap-add sectioning are larger 
than those of the overlap-save implementation 
when the same convergence constants are used in 
both cases.
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