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ABSTRACT

In Part 1 of the paper, we have deveioped various block least mean-square (BLMS) adaptive digital
filters (ADF’s) based on a unified matrix treatment. in Part {I we analyze the convergence behaviors of
the self-orthogonalizing frequency-domain BLMS (FBLMS) ADF and the unconstrained FBLMS
(UFBLMS) ADF both for the overlap-save and overiap-add sectioning methods. We first show that, unlike
the FBLMS ADF with a constant convergence factor, the convergence behavior of the self-orthogonalizing
FBLMS ADF is governed by the same autocorrelation matrix as that of the UFBLMS ADF, We then show
that the optimum solution of the UFBLMS ADF is the same as that of the constrained FBLMS ADF
when the filter length is sufficiently long. The mean of the weight vector of the UFBLMS ADF is also
shown to converge to the optimum Wiener weight vector under a proper condition. However, the steady-
state mean-squared error (MSE) of the UFBLMS ADF turns out to be slightly worse than that of the
constrained algorithm if the same convergence constant is used in both cases. On the other hand, when
the filter length is not sufficiently long, while the constrained FBLMS ADF yields poor performance.
the performance of the UFBLMS ADF can be improved to some extent by utilizing its extended filter-
length capability. As for the self-orthogonalizing FBLMS ADF, we study how we c¢an approximate the
autocorrelation matrix by a diagonal matrix in the frequency domain, We ziso analyze the steady-state
MSE’s of the self-orthogonalizing FBLMS ADF’s with and without the constraint. Finally, we present
various simulation results to verify our analytical results.
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I. INTRODUCTION

In Part T of the paper (1], we have develop-
ed various block least mean-square (BLMS)
adaptive digital filters (AD¥’s) realized using the
fast Fourier transform (FFT) and the overlap-
save or overiap-add sectioning method. Among
those BLMS ADF’s, the seif-orthogonalizing
frequency-domain BLMS (FBLMS) ADF and
the unconstrained FBLMS (UFBLMS) ADF
have some attractive features, For example, the
former has fast convergence speed. and the
latter has reduced computational complexity,

The convergence properties of the BLMS
ADF were studied by Clark. Mitra and Parker
(2],13). They obtained the optimum weight
vector, the condition for convergence, the time
constant {or convergence speed), and the steady-
state mean-squared error {MSE) [2]. These
results were also compared with those of the
least mean-square (LMS) ADF [4], thereby
making it possible to replace easily the existing
LMS ADF by the BLMS ADF which can be
implemented efficiently.

The UFBLMS ADF using the overlap-
save sectioning method was introduced by
Mansour and Gray (31, fased ou the almost

sure asympriic exporential stahilitv of control

theory, they proved the convergence of the
UFBLMS algorithm in the context of system
identification. However, no analytical resuits
were presented on the steady-state MSE. Also,
by computer simulation, the self-orthogonalizing
UFBLMS algorithm was shown to have fast
convergence speed. In another paper [6], the
convergence behaviors of the two FBLMS
ADF's with and without the constraint were
compared by computer simulation when the
number of the filter weights is not sufficiently
large.

The self-orthogonalizing FBLMS ADF based
on the overlap-save sectioning method was
studied by Picchi and Prati [ 7].They derived the
weight adjustment aigorithm by minimizing the
frequency-domain block MSE (BMSE) with the
constraint on the frequency-domain weight
vector. In order to realize the cons-
traint, they applied the Rosen’s gradient pro-
jection method [8]. However, the convergence
behavior of the developed algorithm was not
fully analyzed.

in Part II of the paper, we analyze the
convergence behaviors of the UFBLMS ADF
and the self-orthogonalizing FBLMS ADF
both Tor the overiap-save and overlap-add sec-

tioning methods ' In doing so. we inverse-

We believe that the inclusion of the overtap-add case will enhance the overall understanding of the convergence beha-
viors of the FBLMS ADF’s. However, for a coherent presentation of the results on the convergence analyses, the
overlap-add case will be discussed separately in Appendix.
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transform the weight vector from the frequency
domain into the time domain and then follow
the anaiysis procedure used in the LMS or
BLMS case [2],[4],(91.2 More specifically,
the approach taken in our paper is as follows.
We first compute the optimum Wiener solution
that minimizes an appropriate performance
criterion. We then derive the difference equation
for the mean of the weight vector in order to
prove the convergence of the underlying algo-
rithm. From this equation, we can obtain the
convergence condition and the time constants
and also calculate the steady-state MSE.

Prior to detailed analysis, we investigate the
differences in the mean weight-vector equations
of the BLMS, seif-orthogonalizing FBLMS and
UFBLMS ADF's. We then study the convergence
characteristics of the UFBLMS ADF’s, and ex-
tend our analysis to the self-orthogonalizing
algorithms, According to the results of our
analysis, the optimum solutions of the two
FBLMS ADF’s with and without the constraint
turn out to be the same when the filter length is
sufficiently long. The mean of the weight vector
of the UFBLMS ADF is also shown to converge
to the optimum Wiener weight vector under a
proper condition, On the other hand, when the
filter length is not sufficiently long, the original
and unconstrained FBLMS ADF’s are shown to
reveal quite different convergence behaviors in
the steady state. As for the self-orthogonalizing
FBLMS ADF, we obtain the difference equation
for the mean of the weight-error vector and
discuss how we can approximate the auto-
correlation matrix by a diagonal matrix in the
frequency domain. One of the results indicates
that the self-orthogonalizing FBLMS ADF can
have superior convergence speed over the self-
orthogonalizing frequency-domain LMS (FLMS)
ADF which operates on a sample-by-sample
basis. We alse obtain the analytical results on

the steady.state MSE’s of the self-orthogonali-
zing FBLMS ADF’s with and without the con-
straint.

Following this Introduction, in Section Il
we briefly discuss the convergence properties of
the BLMS, UFBLMS and self-orthogonalizing
FBLMS ADF’s. In Section Ili, we analyze in
detail the convergence behaviors of the UFBLMS
ADF. In Section IV, we study how we can
realize the self-orthogonalizing algorithm in
the frequency domain. In Section V, we present
various simulation results to verify our analytical
results. Finally, we draw conclusions in Section
VI. In addition, the results of the convergence
analysis of the overlap-add realization are given
in Appendix.

II. CHARACTERISTICS OF BLOCK LMS
ADF’s

In this section, we briefly describe the pro-
perties of the BLMS, UFBLMS and self-ortho-
gonalizing FBLMS ADF’s. In our discussion,
all input data for these ADF’s are assumed to be
stationary and real-valued. As for the BLMS
ADF, a detailed convergence analysis can be
found in [2]. In Sections 1II and IV, we com-
pare the analytical results of the UFBLMS and
self-orthogonalizing FBLMS ADF’s with those
of the BLMS ADF, which is reviewed in this
section.

A. Optimum Block Wiener Solution and BLMS
Algorithm

Assume that an FIR ADF has M weights
“wmi'and that the filter produces its output
-vr,'from the input - ., and the desired res-
ponse |, . For our discussion here, we use the
following basic egquations which we used in
Part 13

Y

" The reason is that. as will be seen in Sections li-1V. we can get the physical meaning of the autocarselation natrix
more easily from the time domain rather than the frequency domain view point.

_‘ . N . N
All the notations used in Part 1] will be the same as those in Part 1 of the paper unless otherwise stated.
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Block MSE
. l o . 1.
BE K 2 Ejewe il
Output vector
¥ X Wy 12 a)
Error vector
e~ dk ¥k i 2hi
Weight vector
weo = wet e Xie (2¢)
where

# is @ convergence factor.

Xkl Nkl -1 Nkt 2 Nkl M
‘ Nkl Nkl Nui TNk M s
X i Nki.e2 Xkl.-1 Xkl XKLL MO
!
! g g . .
| Xki-ioz Nktono3 Nklonoa TNk oMo
|
LOXkLooot Nkr-no2 Xkl UNmy v
. . . t
Yo = o MrL Mo T NRLaL v

: t
dy - der i rdin 0
and
I . ]
Wi ™ Wro Wiy Wyrow 2 Wi

The optimum block Wiener solution that
minimizes the BMSE defined in (1) can easily
be obtained as the foilowing:

wWopr = nRxl e Px

where

R 2 XNe X and wpe LX) de
When the signals are stationary, the MxM block

autocorrelation matrix and Mx1 crosscorrela-
tion vector in (3) become {2]

sRy 1.Ry and epx—L.px i

where

R« :,Ef Xn X:\i. pxéEandn_[~
and Xo2 X Npor v ¥%n wad !t

Therefore, in the stationary case the block
solutions are the same as the conventional
wiener solutions, That is,

B Wopt © Wopr and gEmin " Emin 1o
where w..; 2 R.'py and emi IS the minimum
MSE.

With the usual assumption that the signal
matrix and the weight vector are uncorreiated,
we can easily obtain the mean of the weight-
error vector for the BLMS ADF given in (2)
as the following:

}.L Yp.o, '-IM ,ﬂBRxf &, \'kq_ :'.Iu LELR;:[‘:?\M.:
g3

where v, 2w, «W.,, . Based on {(6), we can obtain

the convergence condition and the time con-

stants of the MSE process, and also calculate
the steady-state excess MSE as follows [(2].

= Convergence condition:

2 2
o Qe JE— V7

0 < gt
s ForriRy

"L ""‘max

where A .. is the largest value among the eigen

values, X:iY.,. of Ry .

+ Time constants:

|
WCe LY (in biocks) ¥ a
LESR Y
1 - . _
in samples. . Toin Al “Hb
2uld
Fxoess MSI

RE n T, M 1 gRx: i uemin
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were tr{R,)denotes the sum of the diagonal
elements of Ry and o A E[x2]

It is noted here that, since both the TBLMS
and FBLMS ADF’s using a constant convergence
factor # are exact implementations of the
BIMS ADF, they have the same convergence
characteristics as those of the BLMS ADF.

B. Unconstrained FBLMS Algorithm

In Part I of the paper, we have discussed
two FBLMS algorithms based on the overlap-
save sectioning which are given as

s@Wya1 = sy T Py st 5 €k {10a)
and
s = Pue (sﬂ'k'{‘"ﬂsz?k sek), (10b)

It should be noted that the FBLMS algorithm
in (102} is an exact implementation of the
BLMS algorithm in (2¢), whereas the FBLMS
algorithm in (10b) is not. Expecially, they have
different convergence behaviors in the sense
that, unlike the latter algorithm, the former
algorithm converges to the optimum solution
only for a special initial condition (i.e., Pu.o s@o
=5s®.)As will be seen in Sections III-V, when the
filter length is sufficiently long, the UFBLMS
algorithm has the same convergence character-
istics as those of the FBLMS algorithm in (10b).
For this reason, hereafter we represent the
UFBLMS and FBLMS algorithms using new
frequency-domain vectors @« and u@€ as
folows.

UFBLMS:
u@i ) S T u S-Tk ue . 1
FBLMS

swiot 2P0y Gy - g X cey b gl

In (1t), the frequency-domain error vector of
the UFBLMS ADF is given from (33) of Part 1
as

wli = st - Py s Xk w0k UK

Let us discuss the convergence behavior of
the UFBLMS algorithm of (11) in terms of the
mean weight vector. Substituting (13) into (11}
and taking expectation of both sides of (11)
lead to

E{u@wa] =Eluww} +ul E[+ X sdi]
"E[sfk P sX.] Eluwdl!. "
In order to see the difference in the convergence

behaviors between the BLMS and UFBLMS
ADF’s, we inverse-transform both sides of

(14) and obtain

E’Luwk‘l] Efu WHJ +ped Ei’_sxllldhi - Ei___c“. <X
E[uwk]li M

In (15), the LxN matrix
sXu is a part of the NxN circulant matrix < X« and
they are defined from (5) of Part | as

where ,w,=F"' @,

Xa  Xp Nt AT Y ;. N
X ixc]L and JXo2lXe Xeioo I
M N-M

It should be noted here that the size of the time-
domain weight vector . w« in{15)is NxI, while
the size of Wx in (2c¢) is Mxl, As can be seen
from (6} and (15), unlike the BLMS ADF, the
time-domain autocorrelation matrix of the
UFBLMS algorithm is given byF ! X! X, whose
size is NxN. The characteristics of this new
autocorrelation matrix will be studied in detail
in Sections IIT and IV,

C. Self-orthogonalizing FBLMS Algorithm

Following the same point of view presented
in the previous subsection, two self-orthogonali-
zing FBLMS algorithms using the overlap-
save sectioning method can be considered as the
following:

o T . .
u®k u@, :"st s‘h u €y LI
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and

s = Py (ot Yo Ry sfk s€ ), t17b}

where sR\ is an NxN diagonal matrix which can
be estimated using some appropriate method
[for example, see (46) of Part I} in actual reati-
zation of (17). Here, we discuss the character-
istics of the self-orthogonalizing version of the
constrained algorithm in (17b). Inserting (13)
into (17b), we can obtain the mean of the
frequency-domain weight vector as

E[swku 1 Pus E[s“—'k,: Fy Py Ry
f E{si}: sdkj E{sik Hl,l. SXI(J; PM.n l,l swaj ' il

Noting that the last (N-M) elements of the
inverse transform of sw, are zero, we can get
from (18)

Elwi ] =E{wc] 7 Pa, (F' R F

‘IELSX‘udk] Ele‘k; \k I"'“’u' e

Comparing (15) and (19), one can see that the
time-domain autocorrelation matrix of the self-

orthogonalizing algorithm is not the same in
its present form as that of the UFBLMS algo-
rithm., However, we can show from (16} that,
since «Xu=1{ X« ' Xc! we have for the last term in
19)

ELXS X0 Elwed - EiXE oXoi] & 5

hoM.

it

Thus, the convergence behavior of the self-
orthogonalizing FBLMS ADF is governed by
the same NxN matrix [ X! .\,. asthatof
the UFBLMS ADF. For this reason, in next
sections we analyze the convergence behaviot ol
the UFBLMS ADF first and then extend our
analysis to the self-orthogonalizing FBL.MS ADF,
It is noted that, when the matrix <&« is an
identity matrix, the difference equation of (19}
becomes that of the BLMS ADF in (6). Note

also from (6) and (19) that the use of the dia-
gonal matrix in the frequency domain introduces
another input matrix X.’ which does not appear
in the weight vector equation of the BLMS ADF.
The effec of Xc on the convergence behavior
will be studied in Section IV, The convergence
behavior of the self-orthogonalizing version for
the UFBLMS ADF will also be analyzed in that
section.

III. CONVERGENCE-ANALYSIS OF
UNCENSTRAINED FBLMS ADF’s

As can be seen in (3), the optimum Wiener
weights are completely determined in the time
domain by the autocorrelation values of the
input signal and the crosscorrelation values
between the desired and input signals. Alter-
natively, they are determined in the frequency
domain by the power spectra of the input and
desired signals. It is known that, unless the
bandwidth of the frequency spectrum is ex-

tremely narrow like a tone, the effective duration
of the inverse transform of the spectrum which

is of finite bandwidth in the frequency domain
is also finite. Therefore, in most applications of
the ADF in which the signal spectra are of finite
bandwidth, both the correlation values and
optimum filter weights approach zero when they
are sufficiently far away from the center of the
time origin. In this case, the optimum Wiener
tilter can be approximated by a finite impulse
response {FIR) filter, Based on this FIR approxi-
mation, we can represent the desired signal as

di % Nn s wWai ‘& 2h

where )\, is the number of the model filter
weights, 'w, .° and :f.! i3 a zero-mean white
noise process that is uncorrelated with | i, T
i35 noted that the accuracy of the approximation
can be arbitrarily improved by increasing
Mo. Consequently, in realization of the system
whose signals are modeled by (21), the number
of the weights of the ADF, M, must he greater
than or equal to Al, to achieve the best per-
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formance. It can easily be shown that under
the signal model of (21)with M=M,, the optimum
Wiener weigh{ vector becomes the model weight
VECTOT b Woot = Wopr= Wal [Waomwa 1. . Wa. n-1 ]
In the following, we analyze the convergence
behavior of the UFBLMS ADF first when M =M,
and then discuss how the convergence behavior
will be changed when M <M,

In the UFBLMS atgorithm, there is no con-
straint on the weight vector. Therefore, unlike
in the constrained algorithm, all the N elemenis
of the time-domain weight vector are used in
computing the output and adjusting the weights.
To see this aspect more clearly, from (13} and
(15) we represent the output and adjustment
algorithm of the UFBLMS ADF in the time
domain as

¥e T s Xu u Wk {22a)

and

Wikt T uWy TM< x:;eu . {Zgb}

By splitting into

M
23

. a Wi
uWi & X
B W L Now

we decompase (22) as the following:

Yo XwaWe' Xey Wy, t24a)
aWuoy AWy ot XEe, . RELY!
P T S N IRSTEE:

One can see from (24) that removing the con-
straint on the weights introduces additional
terms, which are related with X.. in the output
and adjustment algorithm. Since \. is generated
by circular extension of \,  the additional
terms incurred above have Dbeen called the
circuiar convolution effect. In the following,
we investigate how the circular convolution

terms affect the convergence behavior. We first

compute the optimum solution and the mean of
the weight vector of the UFBLMS aigorithm.
We then obtain various results on the conver-
gence behavior.

A. UFBLMS Algorithm and Its
Solution

Optimum

The optimum weight vector of the UFBLMS
ADF is derived by minimizing the unconstrained
frequency-domain BMSE. Alternatively, we can
obtain the same solution based on the block
orthogonality principle [2]. According to this
principle and from (11), the optimum weight
vector, «@,n must satisfy

ElsXy vec]l =0. 950

We get from (25) the equation for the optimum
weight vector as

N i_ siu sdk .E -k | S,?k lou. 1 S.\.k j o 208

or

EfeXbhde] EiXd sXuiuWon . 126b}

Also, combining (26%) and {]5), we obtain the
expression for the mean of the weight-error

vector as

[ SV o o aaRTE v )

where .vi oW o Waw and LR O E XX
Thus, we can see from (26b) and (27) that
depending on the properties of the matrix
oR+. the UFBLMS ADF can have a unique
optimum weight vector and also the weight
vector of the filter can converge in the mean to
the optimum seolution independently of the
initial value of the weight vector .w. "or .-

In the next subsection. we investigate the pro-

perties of R«
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B. Properties of the Autocorrelation Matrix ' R,

Based on (16), we can decompose ,Rx as

E[Xy X ELXw Xei

'qu'_Ei;sxltjs .u1 SRty vl v 1
Xl 'l iyt B XX,

| R RIT
= R, © Red newm o
M N- M

It is noted from (28) that ,R, is an NxN sym-
metric matrix, To evaluate (R,. we have to speci-
fy the elements of the L x (N-M) matrix which
is the lower-right part of the NxN circulant
matrix sX« . For the ease of analysis, N. is
assumed to be zero for which case N=L+M-1.

In this case, X. is given as

XKL L -1 XKoL v TNk 2 Nkl
XkL M- XkLebo1 Nkl g Xkt -2
Xe =] Xun-wez Nkl.- M=) Tk 4 Rki -3
Xkl -8 1-2 Xen %-1-4 Nkl o.M Nkf.obo 1
NKf- M bel NkL-M O Eer TNk o9 Np: o %L

al

Defining the correlation of the stationary input
from (2) and (29)
we can compute all the elements of the sub-

process as 21 S E[xnXa.( }.

matrices oRx. Re and R, as the following®:
WRets Lo where 1iilj=M, EOPe
Reie, vl b0 b s 00 J e

where | =i, 2N M. 2300
R o w RO

where 1 NN and 1e g o A Ui

It is noted from (30) that, uniike the matrix
R,, both matrices sRx and Rc are symmetric

Toeplitz. When o is very small for / greater

than a positive integer m, we can neglect those
terms in the above matrices When M is suffi-
ciently greater than m, s R« reduces to

Do »0% ﬂm 0
oy 2o .0’1 R

.O'z o1 an.'~l -'.. l.Tm
aBx = LRx - (31a)
S e ‘01 02

oo Gy

O Om 02 01 Do .

when M2»m, N is also far greater than m. In that
case, one of two correfation terms both in (30b)
and (30¢) can be neglected. Thus, we get from
{30b) and (30c¢)

Dodg Avd: 80> "HAm
&0, oty e
820: A0 Beoy 1, -, . 0

R.— L amfOm
amm
T Ands froy @20y
O - s awp 1o,
dnlm " 828 oy o
and

4 . - s L
When N, is not zero. though (30b) and (30¢) must be stightly modified, the general structure wil still be maintained.
Also, in that case, for a better approximation of Ry it may be preferable to use N z ptevious input data instead of

zero-valued data [see the footnote 3 of Part 1).
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au.ﬂm--'m?. 4103 810 28,01
. a: 03 Q202
a0
adm a0
R,=L 0
'y o
aw:‘.‘-
az @2 a;m." .
{ d1 01 102 anm"an.oq “‘ﬁlﬂm
(31¢)
where
;b1 __E‘ 0¢=m
= L, .

When L is sufficiently larger than m, all a; s ¢can
he approximated as unity. In that case the NxN
matrix «Rx becomes from (31)

[ Do O .02""pm : Pm* D2 01
orpam Il ’ 02
22 &1 .\‘Jn ’ :

me Som ! rr
0131 “_".‘ “.‘ -"_ .". : Pm 0
’ﬂo.m @2 :
o106 1 02
Romt] o onorpuen s ppron
Om -+ 01 I Bo @1 P2 " Om
o | O o O
{ @2 01 00
om |
0 : om Dm
©Om |
! 00 01 02
22 : 01 Do O
M 02 0m t Om " B0 Do
132

Consequently, we can see from (32) that, when
m<€M and m<, Ry
circulant matrix. It is known that a circulant

becomes an NXN

matrix is diagonalized by the discrete Fourier
transform (DFT) [10]. Thus, we get the eigen-
||R\( -’L

values A,i%, of as follows {11}

qu/Lz'F_1 sy F=- (F/\/_N-)I wAy (F/ JhT} 33

where T is the NxN DFT matrix and the NxN
diagnal matrix oA is defined by oA, o diag

(Whroudz, o odsors wAn) . In{(33), udifare
determined by the DFT of the first column of
«Rx/L as the following:

WA = ?_-:.,mexpl —j2xtii 1/NI-

2 ool —i2a (N )G 1/ a1
=po'§-2;81mcosf2:ri(i--l]fN|‘ 1N,

On the other hand, when m< M, the MxM matrix
&+ Ry can be approximated by an MxM circulant
matrix as was dome in [9]. In that case, we get
the eigenvalues!AitY..of R, /L as the following:

=2 ocexpl <i2al e 1)/Mi~ ﬁ

grexpl — e (M—4)G - Li/ME 37

=pot2 L orcost 2al il 1iAME 1mi s M,

It is noted from (34) and (35) that !4, '}, and
tuA, 1N represent the M-point and N-point,
respectively, power spectra of the same input
random process' x» .. For example, when N=2M,
the even-numbered frequency components (or
eigenvalues) of (Rx are the same as those of
sRx, i€, wAn=2,, 1SiEM {see (34) and
(35)]. The odd-numbered ones are generated
vy interpolating the values ii,. Thus, if M>m,the
M-point power spectrum already has sufficient
frequency resolution because the number of
zeros appended is N-(2m+1), Hence, even in the
N-point power spectrum which has increased
frequency resolution, there will be no spurious
peaks and valleys which did not appear in the M-
point spectrum, Therefore, we can see that the
eigenvalue distributions of the two matrices
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wRx and  sRx  ate asymptotically the same
except for the different number of eigenvalues.
For exal‘nple, uAmax =Amax and WAmin=Amin

C. Convergence Properties of UFBLMS Algo-

rithm

We are now ready to solve the optimum
solution and study the convergence behaviors of
the UFBLMS ADF. According to the results
obtained in the previous subsection, the matrix
uRx is nonsingular as eRx is nonsingular, Thus,
we can solve (26b) for uW.:  However, our
concern here is how the Nxl weight vector
‘Woot Is Telated to the Mx] weight vector s Wao:.
Based on the signal model in (21) and when
M =M, we can show that

dy— X Wa + ‘Ek 3

where

&, :LEKL Ent € 0t

Inserting (36) into (26b) yieids

uRg wWope = E[st. ‘n] W E\\u‘ XK ‘g Wopr . ]

Splitting the Nx1 vector .w,,. into two sub-

vectors  aw,,e and  ,w.... we get from (37}

LR, | aWeet TeNoer. "0 (3%

Thus, we obtain from (38) the optimum solu-
tion of the UFBLMS ADF as

aVWorr  wWoor atd aWon - O

Also, one can see from (39) that the minimum
MSE of the UFBLMS ADF. ut ona.
as that of the BLMS ADF, ssmiv The optimum
solution of (39) indicates that when M 2M,, no
circular convolution effect occurs even without

1s the same

the constraining operation on the weights, This
is another unique feature of the ADF compared

to the fixed-coefficient digital filter, It has
already been shown in {12] that, unlike in fixed-
coefficient digital filtering, the overlap-save im-
plementation requires less computation for the
BLMS ADF than the overlap-add implementa-
tion. Adaptive realization of an ADF using
appropriate desired signals enables the self-
constraining operation.

We can get from {27) and Section III-B
the convergence properties of the UFBLMS
ADF as follows.

« Convergence condition:

2 ( 2 41
< - P r— - e T e i
O e O U TR
+ Time constants:
W . . -tin samplesi. 1EiEN 4
‘fﬂu i
+ Excess MSE:
= 1 laRx /Lt ye l Neoie q2
ué - 9 10 ludbyx /Lo yEmin 5 HINT x € min , <

Comparing (2b) and {42), one can see that the
UFBLMS ADF can save two FFT operations at
the expense of the slightly increased steady-
state MSE when the same convergence constants
are used in both cases, As will be seen in Sec-
tion V, this increase is not significant. For
example, according to (9b) and (42), the dif-
ference in the steady-state MSE’s between the
two cases is about 0.3 dB when - (.01, M=16,
N=32,and ¢5=1.

D. Circular Convolution Effect

So far we have discussed the convergence
behaviors of the UFBLMS ADF when M\l Here,
we consider the case whenM < M, It is clear that.
when N < M, the optimum solution of the BLMS
ADF, swoor. is a truncated version of wa. Also,

Bhia increases because of the truncation of the
optimum weight vector, In the following, we are
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going to discuss how the UFBLMS ADF works i1
this situation. The output of the UFBLMS ADF
is given from (22a) and (23) as

Vi~ s Xuu W= | X © Xel [ rrrrr : 43
It is noted from (29) that, since X. is the cir-
cular extension of X, in each row of X, there is
a jump in the time indices of the input data
'xn!.To see the effect of the assumption on
M <M., we schematically draw the matrix (X, and
the vector uwx in Fig. 1, In Fig. 1 the jump is
represented by the diagonal solid line in X . As
can be seen in Fig. 1, in the BLMS ADF, only
the first M (<M,) elements of the time-domain
weight vector can have nonzero values. Recalling
the results in the previous subsections, the
UFBLMS ADF in this situation will try to opti-
mize its performance by utilizing the first Mo{>M)
¢lements of the vector, while the last N — M ele-
ments will approach zero values, It is, therefore,
important to see how the M,— N weights, .w,. in
the middte of .w, in Fig. 1 affects the con-
vergence behavior of the UFBLMS ADF. One
can see from Fig. 1 that the matrix ¥, with its

size {J. 1A, Miixhl,becomes the lower part of
X« when M- M.. As for the matrix Xu with its
size!M, MjxM,. the time index of the data in the
tast M, Al columns is not continuous, and parti-
culary in cach row of Xy two data being apart
by N sampling times are undesirably wrapped
around. Therefore, the existence of non-zero
oy will help improve the performance in the
last L, — M, —M; output samples, whereas in the
first M, -\ output samples it will not. However,
to reduce the overall block MSE, the n{ x| weight
vector Wi Algw! c.wplt Wwill try to be close to
the optimum weight vector, n Wos for the case of
M=—M, It can also be seen that,unlike for the
first M, M output samples, the MSE of the UFB-
LMS ADF for the last L- ‘M, -Mioutput samples
will be significantly improved compared to that
of the BLMS ADF. Al! these phenomena will be
demonstrated by computer simulation in Section
V.

It can be seen from Fig. 1 that, given M, the
undesirable wrap-around (or circular convolu-
tion) effect increases and propagates from the
first output sampie toward the last output
sample in each block as M decreases to 1. Thus,

N -
M L Mo-M_ N-Mo Wk =
T i1
- sl - --
L (=] E
- £ w !
[— ] 8’k .§ z
L |
| F----]
2 2
: O |
1 z
1 1

{q)

{b)

Fig. 1. A schematic represeniation of the circular

convolution effect when M. M, .
"a']*'xl-l" [\'k \:&| L,

v N M

hiawe Saw! w0

“ b LIRSS
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unless the input has special characteristics (for
example, periodicity) to avoid the wrap-around
effect. the worst performance of the UFBLMS
ADF yields when M=1. Assuming N, 0 we can
easily see that the case with M=1 leads to a
special structure of the UFBLMS ADF in which
N=L. In addition to the removed constraint in
weight adjustment, the sectioning operation
for computing the output is also eliminated in
this structure since #,, =~ I, and thus .~ F '
This UFBLMS ADF is the same as
the structure studied in [13]-[18]. As discussed

(sl’kuwk }

above, this structure cannot be expected to show
good performance in most applications because
of the serious wrap-around effect. One possible
use of the UFBLMS ADF with M={ wouid be
in the adaptive line enhancement (ALE) applica-
tion. According to our results of computer
simulation, even in the ALE, this structure
appears not to show good performance unless
the time lag N-1 is some multiple of the period
(in samples) of the input sinusoid and the signal-
tonoise ratio (SNR) is high. In Section V, we
will also present some results of computer
simulation, illusirating the performance charac-
teristics of the UFBLMS ADF in A -step linear
prediction applications. According to these
results, the first M elements of the time-domain
weight vector of the UFBLMS ADF have the
same information about the signals as that of the
constrained algorithm.

IV, CONVERGENCE ANALYSIS OF SELF-
ORTHOGONALIZING FBLMS ADF’s

The self-orthogonalizing algorithms of the
LMS-type ADF’s have been known to have
fast convergence speed without altering the
optimum Wiener solution | !%]. In this section.
we first discuss how we can implement in the
frequency domain some self-orthogonalizing
algotithms for the UFBLMS ADF and then
extend our discussion to the constrained algo-
rithm,

A. Self-orthogonalizing Agorithms for UFBLMS
ADF

In Section III, we have shown that the
convergence behavior of the UFBLMS ADF is
governed by the matrix LR, and it can be ap-
proximated as a circulant matrix which is dia-
gonalized by the DFT. Since the inverse of a
circulant matrix can be computed relatively
easily in the DFT domain. we can consider a
self- orthogonalizing algorithm in which the
mean of the weighterror vector is given as
(91,0191

}‘;Eu\.h-l : [I:\ T'.rl..qul \.R_\.] F-[u\'kj- o} I

when is a convergence constant. Referring to
the approach taken in Section Iii-A, we can
derive the UFBLMS algorithm which corres-
ponds to (44) as the following:

P12 AT uwk4ﬂ} F[.qu./L} !F lfs‘?k u€x, gor

Combining (33} and (45), we finally get a self-
orthogonalizing UFBLMS algorithm as

wlWy oy "~y TR qul s.k‘k u€y . bt

As done in [9]), the NxN diagonal matrix A,
can be computed by first estimating the input
autocorrelation values !o:|%,, and then com-
puting e¢ither the FFT of the N-point sequence
too, 0000 0m, U, 00, O, om, ~*. 02,0} or the eigen-
values represented by (34).

Next we discuss another possible seif-
orthogonalizing algorithm which is given by

at T e+ Y R X e, YN

where «H« s an NxN diagonal matrix and de-
fined by stQE;ﬁsYk s/"k_i
behind the self-orthogonalizing algorithm in

The motivation

(47) is that the self-orthogonalizing diagonal

matrix sRi.  can easily be obtained using the
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transformed input X« which is already available
independently of the self-orthogonalization pro-
cess. To see how the above self-orthogonalizing
algorithm works, we derive the mean of the
weight-error vector from (17a), (27) and (47)
as

Ei’uvk-ii': ‘:l'\l "}'stl I‘.IR)(’EIuvk] HH]

where st QF B st F. Since 5.";‘ = 1'“5 X« | 2
from (3a).of Part I, we can show from (47) and
(48) that

R " F P ELs X s Ko F -ELXE <X 20

Comparing (28) and (49), one cannot easily
see whether the adjustment algorithm described
by (47) and (48) is a self-orthogonalizing algo-
rithm since <Ry in its present form is not the
same as «R. . However, in the following it will
be shown that (R, can be approximated and
obtained by multiplying (R, with a scalar con-
stant.

We can see from (49) that, since Xk is
circulant, <R, is also circulant and symmetric,
To compute R, according to (49), we must
specify all the elements of sX«x which is re-
presented by four matrices Xa, X». X¢ and Xx.
Since X« and Xc are described in (2) and (29)
when N,=0, we specify the elements of the
{N-L)xM matrix X, and (N-L)x(N-M) matrix
X, as the following:

Xkt -1 Nupel o1 CUXkloM ooz NkloM 1L

Nkt oMz Xt M 1 TNkt ow 1.3 XeloM o2
3 Nkl M-3 Xki. M-7 0 TUNKL M L ¢ XkioM L3
xa —_

Nkl 2 Nk1. -3 XKLl 1 NRi.-L 2

Nkl 1 Nkt 2 TUUXKE - M- XKL~ Lo

Ml

and

Nkl - -1, Xkb M- 1 TTXKL M3 el M 2 ’
Nkl- M -L-1 XKL N-L TUUNKL- M-4 Xkl M- |
Nul. M-1-2 NKL- M-L-1 """XKklL- M-3% Nkl-- M- 1
Xo ;
Nkh~t.-3 Nkt «1.-4 IERNTE Xkl -1 i
|
Xkbat, -2 Nkl oL -3 SNk - Nl ]

We can now compute the elements of <Ry from
(2),(29),(50) and (51) as

-rsRnJr,.f = (Nh' ] ilou 5 [ ]!0-\..1’.:..
lsi &N, ]

Following the same approximation of !s:!
in Section I1I-B, we can approximate (R, as

follows. When m<N. the elements in (52) can

used

first be approximated as

' (N 1i- Do s, 020 jistm
tsRi)iL) - l Li=syiow o ». No-m =i
(. otherwise ad

Defining a new constant , as

b &l 4 osr <m, 5

N,

we can alternatively represent {53) as

s Nbe oo, oot pivn
(«Rides ‘ Nibw oo o 0 N mies 3o N1
. otherwise,

When m< N, since by=Ifor{--1,2, . m,wecan
further approximate (55) as

No,,. 0l jiim
Ry Nov s 0N m-= i 1+N 1 W

| 0, otherwise.

Comparing (32) and (56) , we obtain

B R
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It is noted here that the values of M (:z\l,) and
m are determined by the signal characteristics,
Therefore, once M and m are given, better ap-
proximations of both matrices ,R. and R, are
obtained for larger values of L. This is because,
as L increases, N increases and thus the validity
of the assumption of m<N becomes betier.
Obviously, given M and m, the FLMS case (L=1}
results in the worst approximatiions of LRy and
sRy
Substituting (57) into (48), we finally get

Elavees) = -y L)

uRk‘ uRx) F | u"k,i it
Based on (44) and (58), we obtain the expres-
sions for the excess MSE’s of the two self-
orthogonalizing UFBLMS algorithms as

1 l
C Do . -
vt 710 Ry wRhuemin ) 7 Nemm {54

1 1 _ 1
u€ o= 2 yir (N wRx’ uRx) vemin — 5 YEmin B

I4

[t is noted here that the resuit on the excess
MSE in (60) is independent of the block length
L. Comparing (42),(59) and (60), we can have
the relation of the convergence constants of the
UFBLMS ADF’s for the same steady-state MSE
as

Y 9N ~uNoi. g

In an actual implementation of the self.
orthogonalizing UFBLMS algorithm described in
(47), R, must be estimated in an appropriate
way. It has been known that the self-orthogonali-
zing algorithm using a single-pole LPF for estima-
tion of s8R significantly improves the conver-
gence speed [1].[5} (9] On the other hand.
since the algorithm in (47) is hased on the rela-
tion between R, and ,R, in{(57), the conver-
.gence behavior depends on the accuracy of the
‘approximations of ,R. and ,R, As noted
earlier in this section, they can be approximated

better by processing the signals on the block-
by-block basis rather than on the sample-by-
sample basis. The improved convergence speed
of the self-orghogonalizing FBLMS ADF over
the self-orthogonalizing FLMS ADF has been
demonstrated in Part 1 of the paper. It is noted
here that in the UFBLMS ADF with M={ (13]-
t 181, the two matrices <K, and .R. are exactly
the same. However, as discussed in Section III-D,
this structure suffers from the circular convoiu-
tion effect [20)

B. Self-orthogonalizing Algorithms for Con-
strained FBLMS ADF

We have shown in Section II-C that the con-
strained algorithm is derived from the UFBLMS
algorithm by placing the congtraint on the weight
vector. Thus, constrained versions of the two
self-orthogonalizing FBLMS ADF’s shown in
(46) and (47) can be considered as the following:

sWio = Pyo lswy 77\1/1xl s Xk s€) (VA

sWy, 7 PM,D (swk" }’st’I S‘Tk Sek,) h3l

We first discuss the convergence behavior of the
algorithm in (63). The mean of the time-domain
weight vector of the algorithm in (63) can be
obtained from (19),(20),(26b),(39) and (48) as

Eiwe i~ E[w]47Py,

BWapt

0

- oRy| 1 [ % 81
Thus, we get from (64) the mean of the weight
error vector as

) vy
l‘:.l_ Vot ™ E.'_ Vk._! =Y p.\a. .~;RI‘t uR:. l h"L"‘l'LJ ] it

Substituting R, of (57} into (65) leads to

E[":«! ]

F'-i Virii 7 l"-!_"h_j TP\(. .\ NS [ S 0 i

. 1 N
= ily H"N Bt B,
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Simtilarly, we can obtain the mean of the weight-
error vector of the algorithm in (62) as

E{vini] =E{wl —5 Py, LuR3’ qu[ .........

=(la- nLh) E[v], 67)

Thus, from (66) and (67) we obtain the excess
MSE's of the self-orthogonalizing constrained
FBLMS algorithms in (62) and (63) as

éaﬂé:}Memm B8
and
I 1
5A=§7ﬁh’1€min. 69

Consequently, comparing (9b),(42),(59),(60),
{68) and (69), we can see that all the constrained
FBLMS algorithms have slightly less steady-
state MSE’s compared to the corresponding
UFBLMS ADF’s. The increased excess MSE
of the UFBLMS ADF is attributed to the increas-
ed effective filter length N in comparison to M
of the constrained ADF. Also, we can see the
relation in (61) among the convergence con-
stants applies to both cases of the FBLMS ADF’s
with and without the constraint. The analytical
results on the steady-state MSE’s of the self-
orthogonalizing constrained FBLMS ADF ob-
tained in this section have been demonstrated
by computer simulation in Part I of the paper.

V. COMPUTER SIMULATION RESULTS AND
DISCUSSION

In the previous sections (and appendix), we
have analyzed the convergence behaviors of the
unconstrained and self-orthogonalizing FBLMS
ADF’s. In this section, we present the results of
computer simulation to verify the analytical
results obtained previously. For our computer
simulation, we considered three application
examples; adaptive channel equalization. adap-
tive echo cancellation, and adaptive spectral
line enhancement. The adaptive equalizer used

here is identical to that in Part I. For the adap-
tive data echo canceller, the adaptive structure
shown in (21, Fig 1] was chosen along with
the echo canceller response in {21, Fig. 2}
The input of the echo canceller was random
binary data and the variance of the noise added
at the output was 0.001. On the other hand, the
4 -step adaptive structure in [22, Fig 1] was
used for the simulation of the adaptive line
enhancer (ALE). In our simulation, the decor-
relation delay 4 was set to be unity and the
input SNR was -6 dB.

To see the effects of self-orthogonalization
and removing the constraint on the convergence
behaviors of the FBLMS ADF’s when the filter
length is sufficiently long, we did simulation of
the adaptive equalizer mentioned above. The
results are shown in Figs. 2 and 3 for the cases
with and without the constraint and the seif-
orthogonalization operation, respectively. We
can see from all those figures that, as analyzed
previously, the MSE’s of the four unconstrained
algorithms increase slightly in comparison to
the corresponding constrained algorithms. We
can also note that the comparison of the FBLMS
ADF’s with and without the self-orthogonali
zation in the frequency domain reveals two
distinctive characteristics, one in the transient
period and the other in the steady state. We
uged the same values chosen in Part 1 for the
initial estimate of the self-orthogonalizing matrix
for the cases shown in Fig. 3(a) and (b). Unlike
the constrained algorithm, the unconstrained
algorithm shows an overshoot in the transient
period both for the cases of the overlap-save
and overlap-add sectioning methods. There-
fore, an increased initial estimate must be used in
the unconstrained algorithm which is more
likely to become unstable because of its in-
creased effective filter length. On the other
hand, unlike in the case of the constant con-
vergence factor, the self-orthogonalizing algo-
rithms realized using overiap-add sectioning show
increased steady-state MSE's as compared to
those realized using overlap-save sectioning
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Fig. 3. Comparison of the convergence behaviors of
the seif-orthogonalizing FBLMS ADF’s for the
cases with and without the constraint M — 16,
L 16 N=32, 8 0.8, y—aNand a=0.015).
(a) Overlap-save sectioning,
{b) Overlap-add sectioning.

To verify our discussion in Section II on
the convergence characteristics of the uncon-
strained algorithm when the fiiter length is not
sufficiently long, we did computer simulation of
an adaptive echo canceller. In Fig. 4 we first
show what values the weights ot the FBLMS
ADF’s with and without the c¢onstraint have
eventually in the steady state. We can see from
Fig. 4(a) and (b) that, unlike the constrained
algorithm, some of the last {N-M) weights of the
unconstrained algorithm are not 2ero in the

steady state, although the first M weights of the
two filters are about the same, Comparing Fig.
4(b) with the original echo channel response,
it turns out that they are very close to each
other [21]. In Fig 5 we show the MSE behaviors
of the same ADF's. We can see from this figuse
that, as discussed in Section II{, the unconstrain-
ed algorithm reveals degradation in MSE in the
beginning of the block due to the circular con-
volution effect. However, in the rest of the
block, the MSE performance is significantiy
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(a) Overall convergence behaviors .
(b) Convergence behavior of the UFBLMS
ADF in the 30th block.

improved by having nonzero values after the
M weight. Consequently, in that way the
unconstrained algorithm minimizes the overall
block MSE which can be much less than that of
the constrained algorithm.

Finally, we discuss the results of computer
simulation of the ALE with a=1. In Fig. 6(a)
and (b), we show the time-domain weight values
of the two FBLMS ALE’s in the steady state. We
see from this figure that the UFBLMS ALE
has a very large peak in its time-domain response.
The reason is as follows. Based on the represen-
tations of the output and data matrices shown

in {43),(2) and {29), respectively, the desired

response vector of the UFBLMS ALE with A=1
isgiven as di={xuLs) Xeroz XL oxeecd’

Thus, we can see from (29) that the last column
of X. is almost the same as d.. Consequently,
we can see from (43) that, to minimize the
MSE between y, and d«, the last element of
the weight vector sW, must be very large.
However, it is interesting to see from Fig. 6(a)
and (b) that the first M weights of the two ALE’s
appear to have similar information. Those
weights are different only by a scale factor.
This aspect can be seen more clearly in the
frequency responses of Fig. 6(c¢). As an extreme
case of the UFBLMS ALE, we can consider the
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case when M=1 and thus N=L, which is the same

structure as that studied in {13]-[18). The

frequency response of the first (N-1) time-
domain weights is shown in Fig. 7(a). As noted
in Section I1I, the performance, however, appears

to be unsatisfactory. As can be seen in Fig, 7(b),

the frequency response may be improved for a

different input frequency because of the periodic

nature of the sinusoid when the input SNR is
high. It is noted that all those frequency res-
ponses of the UFBLMS ALE discussed so far
have been obtained by removing the peak in the
time-domain response, This means that in the

ALE’s we cannot expect the same computational

saving that has been gained in other applications

by removing the constraint on the weights,

VI. CONCLUSIONS
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In Part I of the paper, both for the cases
of the overlap-save and overlap-add sectioning
we derived the unconstrained algorithms from
the alternative structures which cannot be ob-
tained directly from the original BLMS ADF.
The reason for doing so was as follows. Accord-
ing to our simulation result, unlike the con-
ventional FBLMS ADF derived from the BLMS
ADF, both the alternative and unconstrained
FBLMS ADF’s always converge to the optimum
Wiener solution for any initial values of the
frequency-domain weight vector. In Part II
we have shown that the UFBLMS ADF is basi-
cally a frequency-domain problem for which
case the optimum solution must be formulat-
ed directly in the frequency domain. Also, it
has been shown that the autocorrelation matrix
governing the convergence behavior of the
UFBLMS ADF’s is approximately a diagonal
matrix in the frequency domain {or a circulant
matrix in the time domain) both for the cases
of the overlap-save and over-lap-add sectioning.
Furthermore, we have shown that the conver-
gence behavior of the self-orthogonalizing
FBLMS ADF with the constraint is governed
by the same autocorrelation matrix as that of
the FBLMS ADF without the constraint. There-
fore, we believe that the UFBLMS ADF must
be conceived as an independent problem and
thereafter a constrained version of the UFBLMS
ADF could be considered as a special case with
the constraint on the weights if it is necessary
such as in the A-step linear prediction.

In this paper, we have analyzed extensively
the convergence behaviors of the UFBLMS and
self-orthogonalizing FBLMS ADF’s realized bas-
ed on overlap-save sectioning. According to the
results of our analysis, the optimum solutions of
the two FBLMS ADF’s with and without the
constraint are the same when M =M, .The mean
of the weight vector of the UFBLMS ADF
has also been shown to converge to the op-
timum solution regardiess of the initial values of
the frequency-domain weight vector. It has been
shown by analysis that the steady-state MSE of

the UFBLMS ADF, however, increases slightly
in comparison to the constrained algorithm when
the same convergence constant is used in both
cases.On the other hand,when M<M,, the original
and unconstrained FBLMS ADF's have been
shown to reveal quite different convergence
behaviors in the steady state. It has been found
that, when M<M,, the UFBLMS ADF suffers
from the circular convolution effect in the
first M --M, output samples in each block. How-
ever, in the rest output samples in the block,
while the constrained algorithm yields poos
performance due to the insufficient filter length,
the performance of the UFBLMS ADF is im-
proved significantly by utilizing its extended
filter-length capability. As another new re-
sutt, we have shown by computer simulation
that the UFBLMS ADF used even in the adap-
tive line enhancer application has the same in-
formation about the signals as the constrained
algorithm does. Consequently, in most applica-
tions the use of the UFBLMS algorithms yields
no significant degradation in performance.

As for the self-orthogonalizing FBLMS
ADF, we have studied in detail the properties
of the autocorrelation matrix and the seli-
orthogonalizing matrix. As a result, we have
shown that the two matrices ¢an be approximat-
ed such that they differ only by a constant
scale factor. It has also been shown that the
accuracy of the approximations of these matrices
can be improved when the block length is suf-
ficient!y long. This result verifies why the self-
orthogonalizing FBLMS ADF can have superior
convergence speed over the self-orthogonalizing
FLMS ADF which operates on a sample-by-
sample basis. In addition, we have obtained the
analytical results on the steady-state MSE’s
of the self-orthogonalizing FBLMS ADFs
with and without the constraint and verified
the relations among the convergence factors that
were suggested in Part I. Finally, in Appendix
we have analyzed the zonvergence hehavior of
the overlap-add implementation. According ta
the result obtained, it has heen found that the
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excess MSE of the self-orthogonalizing FBLMS Converting all the variables from the frequency
ADF using overlap-add sectioning is larger than domain into the time domain, we get
that of the overlap-save implementation for the
same convergence constant. EiuXt Pro b oXo Suorolath] {A. 6)
APPENDIX 1507 aXe Plo Xk Su-no! (PlosXu= QuosXun +]
Convergence Analysis of FBLMS ADF’s uWoot ,

Realized Using Overlap-add Sectioning
Using the definitions of X, PL,and Q.. we
can show that

In this appendix, we analyze the conver-
gence behavior of the overlap-add I implementa-
tion developed in Part I of the paper. This

" L
appendix together with Sections III and IV PioanaXe+ Qo aXe-t = ‘S“J | (A7)
which dealt with the convergence behavior of B
the overlap-save implementation will provide a Thus, we get from (A.6) and (A.7)
unified theory on the convergence behaviors
of the FBLMS ADF’s realized hased on the fast ELeXd d, ~EisXh sXuj o Worr | A5

convolution.

A. Unconstrained Algorithm Comparing (A.8) and (26b), we can see that

The frequency-domain error vector of the the optimum weight vectors of the two UFBLMS
overlap-add implementation is defined from ADF’s are the same both for the ovetlap-save
(37) of Part I as and overlap-add 1 implementations. In other

_ words, the overlap-add [ implementation in
we Gath = 1P A X QuoaXi e, A 1 {A.2) is another exact implementation of the
system described by (22a) and (22b). Con-
The pair of the FBLMS ADF’s based on overiap- sequently, the same results on the convergence
add I sectioning is given as behavior obtained in Section IIl apply to the

overlap-add implementation with a constant

oo =t Koo s Yo ve) (A 20 convergence factor as well. However, it will be
seen in the following that this is not the case
and when the weight-adjustment aigorithm is modi-
- = . _ fied using the frequency-domain self-orthogonai-
alu i - Pm.o! a2 Yo X el TALT . .
) izing matrix,
where ¢ Qs vex. The optimum weight vector B. Self-orthogonalizing Algorithm

wwop: 0Of the UFLMS ADF in (A.2) must satisfy . . .
woe: OF the in (A.2) Y We discuss the fotlowing self-orthogonalizing

algorithms in order:

Eiafkuek ! aj;k ) u€ : O AL
Substituting { A 1) inte ( A 4) vields e SR B
VAL
EltaXe Poot ol 1 Q%! adhi A, O and
"'Ei._ (a:\-ﬁk DUL,n * nzifu--l Ql..‘:}f \,)l,.l} a“k : QLJ a‘\.n Ly, atty . }.)M,u‘ atthy P -anE ux_-n abyg ) nRhII a-‘—-nw a€k

u® upt (A. 10)
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where the NxN diagonal matrix LR, is defined
as oR, oE[sXxaX«]. Following the same ap-
proach as used in the previous subsection, we
can get the following for (A.9) as

EJ:qul] =E{u w ] +7E{ GRi' Xk Pr o+
+&R;ll ax:‘—l Su-\, o) (A ll)
Pade—(PrLoaXu+ @0 e Xkon ,}uwk”

where

Ry AF ' AR, F.

when d,=X,.we+ &, we can show that

W4

dk”qu[ 0'] +fk=SXU uWopr +§k‘ (A- 12)

Combining (A.7), (A.8), (A.11) and (A.12),
we obfain

E[u"kﬁl]=(IN_TR\‘)E[U“'K] (A‘l }

where
Ry 2E[(aRi' a X5 Puo +sRiliaXio1 Suoro)
(ProaXutQuoaXu-:}],
Expanding R. into two terms leads to

Ry =aRI:I E[ax: Pl..a (PL‘O aXk+ QL.o a X }](A 14)

+&Rlz—ll E[Bxi—l S“—l,‘ (PLJ aXR+Q1.,| axk-1 )]‘

Noting that the correlation values between
input samples of the different blocks are very
small when L. »m, we can approximate R, in
(A.14) as

RBv=sRi' E[(ProaXi)' (PLoaXu!] +aRiL)

E[(QL‘naxk—l)l (QL,naxk—l)J R {A. 151

In the steady state, Ry becomes

R\- ;""ngi EE[ PL‘n aX..)'( P;,,oan) -l (QI..ﬂﬂxk--l }l

Q. o Xu-1)) (A.16)
"aRi:l E[( PL.aXMJ" (PL‘ axk) + (QL. aXk-i )‘
(Qu o Xu-r )],

1L

A
Denoting s X« & o we can modify (A.16) as
B

N-L*

Ry=.Rs'E[A' A+ B'B]

Al A
~ori E[[ 2] [ £]1-oRe ElXiaXal,
(A 17)
We finally get from (A.13) and (A.17)
Eluvker ) ={l—7aRg’ aRk)E[u"k}. (A.18)

Consequently, the excess MSE of the self-
orthogonalizing algorithm in (A.9) is given as

7%5“:"1 . (A 19}

As for the constrained self-orthogonalizing
FBLMS ADF of (A.10), we can get

: 1
E[vk‘l};E[ka '_TPM_ aRk_l aRh[ E[(;'H ] *
N-N

= (Il —7Iw) E[ v] (A. 20}

Thus, the excess MSE of (A.10) becomes from
(A.20)

Ea™= Emin .

B =
M

Compating (A.19) and (A.21) with (60) and
(69), respectively, we can see that the excess
MSE’s of the self-orthogonlizing FBLMS ADF’s
realized using overlap-add sectioning are larger
than those of the overlap-save implementation
when the same convergence constants are used in
both cases,
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