• Title/Summary/Keyword: Least Squares Algorithm

Search Result 564, Processing Time 0.023 seconds

Influencing factors and prediction of carbon dioxide emissions using factor analysis and optimized least squares support vector machine

  • Wei, Siwei;Wang, Ting;Li, Yanbin
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • As the energy and environmental problems are increasingly severe, researches about carbon dioxide emissions has aroused widespread concern. The accurate prediction of carbon dioxide emissions is essential for carbon emissions controlling. In this paper, we analyze the relationship between carbon dioxide emissions and influencing factors in a comprehensive way through correlation analysis and regression analysis, achieving the effective screening of key factors from 16 preliminary selected factors including GDP, total population, total energy consumption, power generation, steel production coal consumption, private owned automobile quantity, etc. Then fruit fly algorithm is used to optimize the parameters of least squares support vector machine. And the optimized model is used for prediction, overcoming the blindness of parameter selection in least squares support vector machine and maximizing the training speed and global searching ability accordingly. The results show that the prediction accuracy of carbon dioxide emissions is improved effectively. Besides, we conclude economic and environmental policy implications on the basis of analysis and calculation.

Visualization of Vector Fields from Density Data Using Moving Least Squares Based on Monte Carlo Method (몬테카를로 방법 기반의 이동최소제곱을 이용한 밀도 데이터의 벡터장 시각화)

  • Jong-Hyun Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose a new method to visualize different vector field patterns from density data. We use moving least squares (MLS), which is used in physics-based simulations and geometric processing. However, typical MLS does not take into account the nature of density, as it is interpolated to a higher order through vector-based constraints. In this paper, we design an algorithm that incorporates Monte Carlo-based weights into the MLS to efficiently account for the density characteristics implicit in the input data, allowing the algorithm to represent different forms of white noise. As a result, we experimentally demonstrate detailed vector fields that are difficult to represent using existing techniques such as naive MLS and divergence-constrained MLS.

A PRECONDITIONER FOR THE LSQR ALGORITHM

  • Karimi, Saeed;Salkuyeh, Davod Khojasteh;Toutounian, Faezeh
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.213-222
    • /
    • 2008
  • Iterative methods are often suitable for solving least squares problems min$||Ax-b||_2$, where A $\epsilon\;\mathbb{R}^{m{\times}n}$ is large and sparse. The well known LSQR algorithm is among the iterative methods for solving these problems. A good preconditioner is often needed to speedup the LSQR convergence. In this paper we present the numerical experiments of applying a well known preconditioner for the LSQR algorithm. The preconditioner is based on the $A^T$ A-orthogonalization process which furnishes an incomplete upper-lower factorization of the inverse of the normal matrix $A^T$ A. The main advantage of this preconditioner is that we apply only one of the factors as a right preconditioner for the LSQR algorithm applied to the least squares problem min$||Ax-b||_2$. The preconditioner needs only the sparse matrix-vector product operations and significantly reduces the solution time compared to the unpreconditioned iteration. Finally, some numerical experiments on test matrices from Harwell-Boeing collection are presented to show the robustness and efficiency of this preconditioner.

  • PDF

Parameter Estimation using a Modified least Squares method (수정된 최소자승법을 이용한 파라미터 추정)

  • Han, Young-Seong;Kim, Eung-Seok;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.691-694
    • /
    • 1991
  • In a discrete parameter estimation system, the standard least squares method shows slow convergence. On the other hand, the weighted least squares method has relatively fast convergence. However, if the input is not sufficiently rich, then gain matrix grows unboundedly. In order to solve these problems, this paper proposes a modified least squares algorithm which prevents gain matrix from growing unboundedly and has fast convergence.

  • PDF

An Equivariant and Robust Estimator in Multivariate Regression Based on Least Trimmed Squares

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1037-1046
    • /
    • 2003
  • We propose an equivariant and robust estimator in multivariate regression model based on the least trimmed squares (LTS) estimator in univariate regression. We call this estimator as multivariate least trimmed squares (MLTS) estimator. The MLTS estimator considers correlations among response variables and it can be shown that the proposed estimator has the appropriate equivariance properties defined in multivariate regression. The MLTS estimator has high breakdown point as does LTS estimator in univariate case. We develop an algorithm for MLTS estimate. Simulation are performed to compare the efficiencies of MLTS estimate with coordinatewise LTS estimate and a numerical example is given to illustrate the effectiveness of MLTS estimate in multivariate regression.

Robust Least Squares Motion Deblurring Using Inertial Sensor for Strapdown Image IR Sensors (스트랩다운 적외선 영상센서를 위한 관성센서 기반 강인최소자승 움직임 훼손영상 복원 기법)

  • Kim, Ki-Seung;Ra, Sung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.314-320
    • /
    • 2012
  • This paper proposes a new robust motion deblurring filter using the inertial sensor measurements for strapdown image IR applications. With taking the PSF measurement error into account, the motion blurred image is modeled by the linear uncertain state space equation with the noise corrupted measurement matrix and the stochastic parameter uncertainty. This motivates us to solve the motion deblurring problem based on the recently developed robust least squares estimation theory. In order to suppress the ringing effect on the deblurred image, the robust least squares estimator is slightly modified by adoping the ridge-regression concept. Through the computer simulations using the actual IR scenes, it is demonstrated that the proposed algorithm shows superior and reliable motion deblurring performance even in the presence of time-varying motion artifact.

Balancing of a Rigid Rotor using Genetic Algorithms (유전 알고리즘을 이용한 강성회전체의 평형잡이)

  • Yang, Bo Seok;Ju, Ho Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.108-108
    • /
    • 1996
  • This paper describes a new approach to solve balancing of a rigid rotor. In this paper, the balancing of the rigid rotor using genetic algorithms, which are search algorithms based on the mechanics of natural selection and natural genetics is proposed. Under the assumption that the initial vibration values used to calculate correction masses contain errors, the influence coefficient method, the least squares method and a genetic algorithm are compared. The results show that the vibration amplitude obtained with the least squares method and the genetic algorithm is smaller than that obtained with the influence coefficient method.

Balancing of a Rigid Rotor using Genetic Algorithms (유전 알고리즘을 이용한 강성회전체의 평형잡이)

  • 양보석;주호진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.40-47
    • /
    • 1996
  • This paper describes a new approach to solve balancing of a rigid rotor. In this paper, the balancing of the rigid rotor using genetic algorithms, which are search algorithms based on the mechanics of natural selection and natural genetics is proposed. Under the assumption that the initial vibration values used to calculate correction masses contain errors, the influence coefficient method, the least squares method and a genetic algorithm are compared. The results show that the vibration amplitude obtained with the least squares method and the genetic algorithm is smaller than that obtained with the influence coefficient method.

  • PDF

Iterative Adaptive Hybrid Image Restoration for Fast Convergence (하이브리드 고속 영상 복원 방식)

  • Ko, Kyel;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.743-747
    • /
    • 2010
  • This paper presents an iterative adaptive hybrid image restoration algorithm for fast convergence. The local variance, mean, and maximum value are used to constrain the solution space. These parameters are computed at each iteration step using partially restored image at each iteration, and they are used to impose the degree of local smoothness on the solution. The resulting iterative algorithm exhibits increased convergence speed and better performance than typical regularized constrained least squares (RCLS) approach.

Comprehensive evaluation of cleaner production in thermal power plants based on an improved least squares support vector machine model

  • Ye, Minquan;Sun, Jingyi;Huang, Shenhai
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.559-565
    • /
    • 2019
  • In order to alleviate the environmental pressure caused by production process of thermal power plants, the application of cleaner production is imperative. To estimate the implementation effects of cleaner production in thermal plants and optimize the strategy duly, it is of great significance to take a comprehensive evaluation for sustainable development. In this paper, a hybrid model that integrated the analytic hierarchy process (AHP) with least squares support vector machine (LSSVM) algorithm optimized by grid search (GS) algorithm is proposed. Based on the establishment of the evaluation index system, AHP is employed to pre-process the data and GS is introduced to optimize the parameters in LSSVM, which can avoid the randomness and inaccuracy of parameters' setting. The results demonstrate that the combined model is able to be employed in the comprehensive evaluation of the cleaner production in the thermal power plants.