Iterative Adaptive Hybrid Image Restoration for Fast Convergence

하이브리드 고속 영상 복원 방식

  • 고결 (숭실대학교 정보통신전자공학부) ;
  • 홍민철 (숭실대학교 정보통신전자공학부)
  • Received : 2010.04.28
  • Accepted : 2010.08.31
  • Published : 2010.09.30

Abstract

This paper presents an iterative adaptive hybrid image restoration algorithm for fast convergence. The local variance, mean, and maximum value are used to constrain the solution space. These parameters are computed at each iteration step using partially restored image at each iteration, and they are used to impose the degree of local smoothness on the solution. The resulting iterative algorithm exhibits increased convergence speed and better performance than typical regularized constrained least squares (RCLS) approach.

본 논문은 빠른 연산(수렴)을 위한 적응 반복 하이브리드 영상 복원 알고리즘을 제안한다. 공간 영역의 국부제약 정보 설정을 위해 국부 영역의 분산, 평균, 국부 최대값을 이용하였다. 반복 기법을 이용하여 매 반복 해에서 얻어진 복원 영상으로부터 상기 제약 정보를 설정하고, 국부 완화도 결정을 위해 사용된다. 제안된 방식은 일반적인 RCLS(Regularized Constrained Least Squares) 방식에 비해 빠른 수렴속도와 더 좋은 성능을 얻을 수 있다.

Keywords

References

  1. H. C. Andrews and B. R. Hunt, Digital Image Restoration, New York: Prentice Hall, 1977.
  2. M. R. Banham and A. K. Katsaggelos, "Digital image restoration," IEEE Signal Processing Magazine, Vol.14, No.2, pp.24-41, March 1997. https://doi.org/10.1109/79.581363
  3. H.Stark Ed., Image Recovery; Theory and Application, Academic Press, 1987
  4. M. E. Zervakis and T. M. Kwon, "Robust estimation techniques in regularized image restoration," Optical Engineeing, Vol.31, No.10, pp.2174-2190, Oct. 1992. https://doi.org/10.1117/12.59978
  5. M.-C. Hong, T. Stathaki, and A. K. Katsaggelos, "Iterative regularized least-mean mixed-norm image restoration," Optical Engineering, Vol.41, No.10, pp.2515-2524, Oct. 2002. https://doi.org/10.1117/1.1503072
  6. S.-W. Jung, T.-H. Kim, and S. -J. Ko, "A novel multiple image deblurring technique using fuzzy projection onto convex sets," IEEE Signal Processing Letters, Vol. 15, No. 3, pp.192-195, March 2009.
  7. M. G. Kand and A> K. Katsaggelos, "General choice of the regularization functional in regularized image restoration," IEEE Trans. Image Processing, Vol. 4, No. 5, pp.594-602, May 1995. https://doi.org/10.1109/83.382494
  8. G. L. Anderson and A. N. Netravali, "Image restoration based on a subject criterion," IEEE Trans. On Sys., Man, and Cyber., Vol. SMC-6,pp.845-853, Dec,1976.
  9. Z. Wang and C. Bovik, "A universal image quality index," IEEE Signal Processing Letter, Vol.9, No.3, pp.81-84, Mar. 2002. https://doi.org/10.1109/97.995823