• 제목/요약/키워드: Least Squares Algorithm

검색결과 564건 처리시간 0.027초

적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계 (Topology Optimization of Shell Structures Using Adaptive Inner-Front Level Set Method (AIFLSM))

  • 박강수;윤성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.354-359
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, an inner-front creation algorithm is proposed, in which the sizes, positions, and number of new inner-fronts during the optimization process can be globally and consistently identified. To update the level set function during the optimization process, the least-squares finite element method is employed. As demonstrative examples for the flexibility and usefulness of the proposed method, the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF

영상데이타를 이용한 항공기 자세각 추정 (Attitude Estimation of an Aircraft using Image Data)

  • 박성수
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.44-50
    • /
    • 2011
  • This paper presents the algorithm for attitude determination of an aircraft using binary image. An image feature vector, which is invariant to translation, scale and rotation, is constructed to capture the functional relations between the feature vector and the corresponding aircraft attitude. An iterated least squares method is suggested for estimating the attitude of given aircraft using the constructed feature vector library. Simulation results show that the proposed algorithm yields good estimates of aircraft attitude in most viewing range, although a relatively large error occurs in some limited viewing direction.

Real- Time Estimation of the Ventricular Relaxation Time Constant

  • Chun Honggu;Kim Hee Chan;Sohn Daewon
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.87-93
    • /
    • 2005
  • A new method for real-time estimating left ventricular relaxation time constant (T) from the left ventricular (LV) pressure waveform, based on the isovolumic relaxation model, is proposed. The presented method uses a recursive least squares (RLS) algorithm to accomplish real-time estimation. A new criterion to detect the end-point of the isovolumic relaxation period (IRP) for the estimation of T is also introduced, which is based on the pattern analysis of mean square errors between the original and reconstructed pressure waveforms. We have verified the performance of the new method in over 4,600 beats obtained from 70 patients. The results demonstrate that the proposed method provides more stable and reliable estimation of τ than the conventional 'off-line' methods.

바코드 신호의 강인한 복원 (Robust Restoration of Barcode Signals)

  • 이한아;이정태
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1859-1864
    • /
    • 2007
  • Existing barcode signal restoration algorithms are not robust to unmodeled outliers that may exist in scanned barcode images due to scratches, dirts, etc. In this paper, we describe a robust barcode signal restoration algorithm that uses the hybrid $L_1-L_2$ norm as a similarity measure. To optimze the similarity measure, we propose a modified iterative reweighted least squares algorithm based on the one step minimization of a quadratic surrogate function. In the simulations and experiments with barcode images, the proposed method showed better robustness than the conventional MSE based method. In addition, the proposed method converged quickly during optimization process.

완전최소자승법을 이용한 QFT의 주파수 전달함수 합성법 (A Frequency Transfer Function Synthesis of QFT Using Total Least Squares Method)

  • 김주식;이상혁
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.649-654
    • /
    • 2002
  • The essential philosophy of the QFT(Quantitative Feedback Theory) is that a suitable controller can be found by loop shaping a nominal loop transfer function such that the frequency response of this function does not violate the QFT bounds. The loop shaping synthesis involves the identification of a structure and its specialization by means of the parameter optimization. This paper presents an optimization algorithm to estimate the controller parameters from the frequency transfer function synthesis using the TLS(Total Least Squares) in the QFT loop shaping procedure. The proposed method identifies the parameter vector of the robust controller from an overdetermined linear system developed from rearranging the two dimensional system matrices and output vectors obtained from the QFT bounds. The feasibility of the suggested algorithm is illustrated with an example.

노면추정을 통한 반능동 현가시스템의 LQG 제어 (LQC Control for Semi-Active Suspension Systems with Road-Adaptation)

  • 손현철;홍경태;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.669-678
    • /
    • 2003
  • A road-adaptive LQG control for the semi-active Macpherson strut suspension system of hydraulic type is investigated. A new control-oriented model, which incorporates the rotational motion of the unsprung mass, is used for control system design. First, based on the extended least squares estimation algorithm, a LQG controller adapting to the estimated road characteristics is designed. With computer simulations, the performance of the proposed LQC-controlled semi-active suspension is compared with that of a non-adaptive one. The results show better control performance of the proposed system over the compared one.

Self-Calibration of High Frequency Errors of Test Optics by Arbitrary N-step Rotation

  • Kim, Seung-Woo;Rhee, Hyug-Gyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.115-123
    • /
    • 2000
  • We propose an extended version of multi-step algorithm of self-calibration of interferometric optical testing instruments. The key idea is to take wavefront measurements with near equal steps in that a slight angular offset is intentionally provided in part rotation. This generalized algorithm adopts least squares technique to determine the true azimuthal positions of part rotation and consequently eliminates calibration errors caused by rotation inaccuracy. In addition, the required numbers of part rotation is greatly reduced when higher order spatial frequency terms are of particular importance.

  • PDF

개선된 수렴 특성을 갖는 적응 극배치 제어기의 설계에 관한 연구 (A Study on the Design of an Adaptive pole Placement Controller with Improved Convergence Properties)

  • 홍연찬;김종환
    • 대한전기학회논문지
    • /
    • 제41권3호
    • /
    • pp.311-319
    • /
    • 1992
  • In this paper, a direct adaptive pole placement controller for an unknown linear time-invariant single-input single-output nonminimum phase plant is proposed. To design this direct adaptive pole placement controller, the auxiliary signals are introduced. Consequently, a linear equation error model is formulated for estimating both the controller parameters and the additional auxiliary parameters. To estimate the controller parameters and the additional auxiliary parameters, the exponentially weighted least-squares algorithm is implemented, and a method of selecting the characteristic polynomials of the sensitivity function filters is proposed. In this method, all the past measurement data are weighted exponentially. A series of simulations for a nonminimum phase plant is presented to illustrate some features of both the parameter estimation and the output response of this adaptive pole placement controller.

  • PDF

영재 교육 개념을 응용한 직선도의 최소영역 평가 (Minimum Zone Evaluation of Straightness Using the Genius Education Concept)

  • 김수광;조동우;이강인
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.130-137
    • /
    • 1999
  • The criteria for determining the elements are the minimum zone method(MZM) and the least squares method(LSM). The LSM is deterministic and simple but is limited at the measurements whose errors are significant compared with form errors. For the precise condition, minimum zone method(MZM) has been selected to determine the elements. It is not deterministic and nonlinear so that a optimizing procedure is needed. The Straightness is the fundamental problem in the evaluating form error. In this paper, a new approach adapting the genius education concept is proposed to obtain an accurate results for the minimum zone problem of the straightness. Its computational algorithm is studied on a set of randomly generated data. To be of almost no account of the specification(the number and the standard devistion etc.) of the sample data, the results shows excellent reliability and high accuracy in estimating the straightness.

  • PDF

Residual Synchronization Error Elimination in OFDM Baseband Receivers

  • Hu, Xingbo;Huang, Yumei;Hong, Zhiliang
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.596-606
    • /
    • 2007
  • It is well known that an OFDM receiver is vulnerable to synchronization errors. Despite fine estimations used in the initial acquisition, there are still residual synchronization errors. Though these errors are very small, they severely degrade the bit error rate (BER) performance. In this paper, we propose a residual error elimination scheme for the digital OFDM baseband receiver aiming to improve the overall BER performance. Three improvements on existing schemes are made: a pilot-aided recursive algorithm for joint estimation of the residual carrier frequency and sampling time offsets; a delay-based timing error correction technique, which smoothly adjusts the incoming data stream without resampling disturbance; and a decision-directed channel gain update algorithm based on recursive least-squares criterion, which offers faster convergence and smaller error than the least-mean-squares algorithms. Simulation results show that the proposed scheme works well in the multipath channel, and its performance is close to that of an OFDM system with perfect synchronization parameters.

  • PDF