Lee, Youngho;Kim, Sun Kyung;Choi, Jongmyung;Park, Gun Woo;Go, Younghye
Journal of Internet of Things and Convergence
/
v.8
no.6
/
pp.115-122
/
2022
Recently, the importance of CPR training for the layperson has been emphasized to improve the survival rate of out-of-hospital cardiac arrest patients. An accurate and realistic training strategy is required for the CPR training effect for laypersons. In this study, we develop an extended reality (XR) based CPR training system and evaluate its usability. The XR based CPR training system consisted of three applications. First, a 3D heart anatomy image registered to the manikin is transmitted to the smart glasses to guide the chest compression point. The second application provides visual and auditory information about the CPR process through smart glasses. At the same time, the smartwatch sends a vibration notification to guide the compression rate. The 'Add-on-kit' is a device that detects the depth and speed of chest compression via sensors installed on the manikin and sends immediate feedback to the smartphone. One hundred laypersons who participated in this study agreed that the XR based CPR training system has realism and effectiveness. XR based registration technology will contribute to improving the efficiency of CPR training by enhancing realism, immersion, and self-directed learning.
Objectives: Indoor air quality has become more important aspeople spend most of their times indoors. Since students spend most of their times at home or at school, they are more likely to be exposed to indoor air pollutants. Ventilation in school classrooms can affect health and learning performance. In this study, ventilation deficiency was evaluated in school classrooms using Monte Carlo simulation. Methods: This study used sensor-based monitoring for six months to measure carbon dioxide (CO2) concentrations in classrooms in elementary, middle, and high schools. The volume of the classroom and the number of students were investigated, and the students' body surface area was used to calculate the CO2 emission rate. The distribution of ventilation rates was estimated by measured CO2 concentration and a mass-balance model using Monte Carlo simulation. Results: In the elementary, middle, and high schools, the average CO2 concentrations exceeded 1000 ppm, indicating that the ventilation rates were insufficient. The ventilation rates were deficient from July to August and in December, but showed relatively high ventilation rates in October. Forty-three percent of elementary schools, 56% of middle schools, and 62% of high schools showed insufficient ventilation rates. Conclusions: The ventilation rates calculated in elementary, middle and high schools were found to be quite insufficient. Therefore, proper management is needed to overcome the lack of ventilation and improve air quality.
Kim, Ji-eung;Park, Jong-chul;Kim, Tae-gyu;Lee, Hee-hwa;Ahn, Jee-Hwan
Journal of the Korea Convergence Society
/
v.12
no.8
/
pp.279-286
/
2021
The purpose of this study is to compare the predictive power of the Bagging and Boosting algorithm of ensemble method based on the motion information that occurs in woman handball matches and to analyze the availability of motion information. To this end, this study analyzed the predictive power of the result of 15 practice matches based on inertial motion by analyzing the predictive power of Random Forest and Adaboost algorithms. The results of the study are as follows. First, the prediction rate of the Random Forest algorithm was 66.9 ± 0.1%, and the prediction rate of the Adaboost algorithm was 65.6 ± 1.6%. Second, Random Forest predicted all of the winning results, but none of the losing results. On the other hand, the Adaboost algorithm shows 91.4% prediction of winning and 10.4% prediction of losing. Third, in the verification of the suitability of the algorithm, the Random Forest had no overfitting error, but Adaboost showed an overfitting error. Based on the results of this study, the availability of motion information is high when predicting sports events, and it was confirmed that the Random Forest algorithm was superior to the Adaboost algorithm.
KIPS Transactions on Software and Data Engineering
/
v.10
no.11
/
pp.449-456
/
2021
An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.33
no.1
/
pp.22-30
/
2023
Currently, almost all product development in the jewelry industry utilizes 3D CAD and 3D printing. In this situation, 3D CAD modeling and 3D printing ability units in colleges, Tomorrow Learning Card Education, and Course Evaluation-type jewelry design related education are conducted with developed curriculum based on the standards for training standards, training hours, training equipment, and practice materials presented by NCS. Accordingly, this study analyzes 3D CAD modeling and 3D printing training facilities, training hours, training equipment, etc into three categories of NCS precious metal processing and jewelry design, and studies the development of educational systems such as 3D CAD/3D printing curriculum and various environments that meet these standards. Education using this 3D CAD/3D printing education system will enable us to continuously supply professional talent with practical skills not only in the jewelry industry but also in the entire 3D CAD/3D printing manufacturing industry, which is called as one of the pillars of the 4th Industry. The quality of employment of trainees receiving education and the long-term retention rate after employed can also have a positive effect. In addition, excellent educational performance will help improve the recruitment rate of new students in jewelry jobs or manufacturing-related departments, which are difficult to recruit new students in recent years.
Journal of the Korea Society of Computer and Information
/
v.14
no.9
/
pp.11-19
/
2009
A RAM-based Neural Net(RBNN) which has multi-discriminators is more effective than RBNN with a discriminator. Experience Sensitive Cumulative Neural Network and 3-D Neuro System(3DNS) that accumulate the features point improved the performance of BNN, which were enabled to train additional and repeated patterns and extract a generalized pattern. In recognition process of Neural Net with multi-discriminator, the selection of class was decided by the value of MRD which calculates the accumulated sum of each class. But they had a saturation problem of its memory cells caused by learning volume increment. Therefore, the decision of MRD has a low performance because recognition rate is decreased by saturation. In this paper, we propose the method which improve the MRD ability. The method consists of the optimum MRD and the matching ratio prototype to generalized image, the cumulative filter ratio, the gap of prototype response MRD. We experimented the performance using NIST database of NIST without preprocessor, and compared this model with 3DNS. The proposed MRD method has more performance of recognition rate and more stable system for distortion of input pattern than 3DNS.
This study attempted to identify the effects of macroeconomic variables such as the All Industry Production Index, Consumer Price Index, CD Interest Rate, and KOSPI on apartment lease prices divided into nationwide, Seoul, metropolitan, and region, and to present a methodological prediction model of apartment lease prices by region using Long Short Term Memory (LSTM). According to VAR analysis results, the nationwide apartment lease price index and consumer price index in Lag1 and 2 had a significant effect on the nationwide apartment lease price, and likewise, the Seoul apartment lease price index, the consumer price index, and the CD interest rate in Lag1 and 2 affect the apartment lease price in Seoul. In addition, it was confirmed that the wide-area apartment jeonse price index and the consumer price index had a significant effect on Lag1, and the local apartment jeonse price index and the consumer price index had a significant effect on Lag1. As a result of the establishment of the LSTM prediction model, the predictive power was the highest with RMSE 0.008, MAE 0.006, and R-Suared values of 0.999 for the local apartment lease price prediction model. In the future, it is expected that more meaningful results can be obtained by applying an advanced model based on deep learning, including major policy variables
In the era of global aging and the retirement of baby boomers, the response is very intensive and dynamic. As baby boomers actually retire, the terms for middle-aged people have been diversified into middle-aged, midle-elderly, and the new middle, which are also evident in the training process. In line with the timing, the government and academia are also making efforts to advance the development of training courses for middle-aged, along with organizing terms for middle-aged. From this point of view, this study aims to analyze the performance of the three-year training courses (2018-2020) for the new middle at Korea Polytechnics and suggest the direction of development of the new middle training course. As a result of the study, the three-year performance of the Shin middle-aged training course gradually increased, but the completion rate and employment rate gradually decreased, indicating that countermeasures were needed. In addition, campus performance in the metropolitan area was higher than that in the non-capital area, so a plan for this deviation was needed. In addition, the need for the integrated operation of the existing 'middle-aged' and 'the new middle' courses operated by Korea Polytechnics was suggested, and measures to specialize in the new middle-aged were proposed.
Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.
Journal of the Korea Society of Computer and Information
/
v.29
no.1
/
pp.273-285
/
2024
With the active utilization of Online Judge (OJ) systems in the field of education, various studies utilizing learner data have emerged. This research proposes a problem recommendation based on a user-based collaborative filtering approach with learner data to support learners in their problem selection. Assistance in learners' problem selection within the OJ system is crucial for enhancing the effectiveness of education as it impacts the learning path. To achieve this, this system identifies learners with similar problem-solving tendencies and utilizes their problem-solving history. The proposed technique has been implemented on an OJ site in the fields of algorithms and programming, operated by the Chungbuk Education Research and Information Institute. The technique's service utility and usability were assessed through expert reviews using the Delphi technique. Additionally, it was piloted with site users, and an analysis of the ratio of correctness revealed approximately a 16% higher submission rate for recommended problems compared to the overall submissions. A survey targeting users who used the recommended problems yielded a 78% response rate, with the majority indicating that the feature was helpful. However, low selection rates of recommended problems and low response rates within the subset of users who used recommended problems highlight the need for future research focusing on improving accessibility, enhancing user feedback collection, and diversifying learner data analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.