The learning curve model is a mathematical form which represents the relationship between the manufacturing experience and its effectiveness. The semiconductor manufacturing is widely known as an appropriate example for the learning effect due to its complicated manufacturing processes. In this paper, I propose a new compound learning curve model for semiconductor products in which the general learning curve model and the growth curve are composed. The dependent variable and the effective independent variables of the model were abstracted from the existing learning curve models and selected according to multiple regression processes. The simulation results using the historical DRAM data show that the proposed compound learning curve model is one of adequate models for describing learning effect of semiconductor products.
Journal of Korean Society of Industrial and Systems Engineering
/
v.15
no.26
/
pp.77-84
/
1992
This paper constructs Croup Technology process-based learning curve model adjusted to a Group Technology environment which accounts for shared learning that occurs when multiple products utilize some of the same process steps. Through this constructed model, the estimated times and productivity of labor calculated by the Group Technology process-based learning curve model are compared with those generated by employing product-based 1 earning curve model. For sensitivity analysis of the model, the impact of learning rate and the ordered production quantity on the ratio differences between Group Technology process-based learning curve model and product-based learning curve model are examined. These results indicate the critical importance of employing Group Technology process-based learning curve model when a process spans multiple products.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.53
no.4
/
pp.208-213
/
2004
In this paper, a new method for the estimation of the effect of DSM program is proposed. By identifying the learning curve of high efficient induction motor, the effect of DSM program applied to that product can be estimated. The learning curve of normal induction motor, to which no DSM program is applied, is identified also. Both learning curves, which are different shapes, means different teaming ratio. It can be concluded that DSM program makes the learning curve of the product change the shape. It also can be concluded that DSM program has influence on the sale of the product to which it is applied.
The Transactions of the Korean Institute of Electrical Engineers B
/
v.53
no.4
/
pp.208-208
/
2004
In this paper, a new method for the estimation of the effect of DSM program is proposed. By identifying the learning curve of high efficient induction motor, the effect of DSM program applied to that product can be estimated. The learning curve of normal induction motor, to which no DSM program is applied, is identified also. Both learning curves, which are different shapes, means different teaming ratio. It can be concluded that DSM program makes the learning curve of the product change the shape. It also can be concluded that DSM program has influence on the sale of the product to which it is applied.
Product usability consists of many attributes such as learnability, efficiency, memorability, and so on. In particular, learnability is one of the most important attributes in product usability. Therefore, many people consider the primary criterion for a good user interface to be the degree to which it is easy to learn. Learnability represents the degree of how much can easily learn the usage of a product. It concerns the features of the interactive system that allow novice users to understand how to use it initially and then how to attain a maximal level of performance. In this study, we studied on the application of learning curve to evaluate product learnability. In order to validate the applicability, we carried out simple experiment using mobile phone. We got task completion times through the experiment and predicted the times using learning curve model. And then, we compared prediction times to task completion times. Finally, we identified that learning curve could apply to predict and compare product learnability.
Journal of Korean Society of Industrial and Systems Engineering
/
v.5
no.6
/
pp.69-78
/
1982
Traditional CVP (Cost-Volume-Profit) analysis employs linear cost and revenue functions within some specified time period and range of operations. Therefore CVP analysis is assumption of constant labor productivity. The use of linear cost functions implicity assumes, among other things, that firm's labor force is either a homogenous group or a collection homogenous subgroups in a constant mix, and that total production changes in a linear fashion through appropriate increase or decrease of seemingly interchangeable labor unit. But productivity rates in many firms are known to change with additional manufacturing experience in employee skill. Learning curve is intended to subsume the effects of all these resources of productivity. This learning phenomenon is quantifiable in the form of a learning curve, or manufacturing progress function. The purpose d this study is to show how alternative assumptions regarding a firm's labor force may be utilize by integrating conventional CVP analysis with learning curve theory, Explicit consideration of the effect of learning should substantially enrich CVP analysis and improve its use as a tool for planning and control of industry.
Communications for Statistical Applications and Methods
/
v.19
no.3
/
pp.433-450
/
2012
As a worker performs a certain operation repeatedly, he tends to become familiar with the job and complete it in a very short time. That means that the efficiency is improved due to his accumulated knowledge, experience and skill in regards to the operation. Investing time in an output is reduced by repeating any operation. This phenomenon is referred to as the learning curve effect. A learning curve is a graphical representation of the changing rate of learning. According to previous literature, learning curve effects are determined by subjective pre-assigned factors. In this study, we propose a new statistical model to clarify the learning curve effect by means of a basic cumulative distribution function. This work mainly focuses on the statistical modeling of binary data. We employ the Newton-Raphson method for the estimation and Delta method for the construction of confidence intervals. We also perform a real data analysis.
The Journal of Korean Institute for Practical Engineering Education
/
v.4
no.1
/
pp.165-172
/
2012
For practical education, many practices using various practical equipments have to be provided to students. In this study, the application of learning curve to represent student's learning process in a practical education using a equipment was studied. Learning curve model was originally developed in production management and based on human performance in human factors aspects. In this study, the application of learning curve model was studied on the eye tracking system, which is used to evaluate the usability of a product in design area. As a case study for its applicability, practical education for eye tracking system was provided to three students and then task completion times were measured for hardware system setup and gaze image recording. Learning curves were estimated for two tasks and then task completion times were predicted using the learning curves. Through ANOVA(analysis of variance) and correlation analysis, the applicability of learning curve to practical education was analysed. As the result, learning curve could be effectively applied to practical eduacation using equipment.
Purpose: The aims are to: (i) display the multidimensional learning curve of totally laparoscopic distal gastrectomy, and (ii) verify the feasibility of totally laparoscopic distal gastrectomy after learning curve completion by comparing it with laparoscopy-assisted distal gastrectomy. Materials and Methods: From January 2005 to June 2012, 247 patients who underwent laparoscopy-assisted distal gastrectomy (n=136) and totally laparoscopic distal gastrectomy (n=111) for early gastric cancer were enrolled. Their clinicopathological characteristics and early surgical outcomes were analyzed. Analysis of the totally laparoscopic distal gastrectomy learning curve was conducted using the moving average method and the cumulative sum method on 180 patients who underwent totally laparoscopic distal gastrectomy. Results: Our study indicated that experience with 40 and 20 totally laparoscopic distal gastrectomy cases, is required in order to achieve optimum proficiency by two surgeons. There were no remarkable differences in the clinicopathological characteristics between laparoscopy-assisted distal gastrectomy and totally laparoscopic distal gastrectomy groups. The two groups were comparable in terms of open conversion, combined resection, morbidities, reoperation rate, hospital stay and time to first flatus (P>0.05). However, totally laparoscopic distal gastrectomy had a significantly shorter mean operation time than laparoscopy-assisted distal gastrectomy (P<0.01). We also found that intra-abdominal abscess and overall complication rates were significantly higher before the learning curve than after the learning curve (P<0.05). Conclusions: Experience with 20~40 cases of totally laparoscopic distal gastrectomy is required to complete the learning curve. The use of totally laparoscopic distal gastrectomy after learning curve completion is a feasible and timesaving method compared to laparoscopy-assisted distal gastrectomy.
As a certain job is repeatedly done by a worker, the outcome comparative to the effort to complete the job gets more remarkable. The outcome may be the time required and fraction defective. This phenomenon is referred to a learning-curve effect. We focus on the parametric modeling of the learning-curve effects on count data using a logistic cumulative distribution function and some probability mass functions such as a Poisson and negative binomial. We conduct various simulation scenarios to clarify the characteristics of the proposed model. We also consider a real application to compare the two discrete-type distribution functions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.