The study tried to examine the characteristics of transcription culture on YouTube through narrative analysis methods. The study found five meaningful features in YouTube's transcription culture. YouTube's transcription culture was first characterized by efficient writing and learning skills. Second, there was a characteristic of a transcription to read and understand text more deeply. Third, it had the characteristics of five strategies to advance my writing. Fourth, YouTubers had time to self-heal and comfort through transcription. Fifth, YouTube's transcription culture has expanded and developed into left-handed writing and digital writing. The characteristics of these YouTubers' transcription culture are expected to enrich the transcription culture that has been handed down for many years.
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.7
/
pp.1088-1097
/
2021
Vibration data of mechanical equipment inevitably have noise. This noise adversely af ects the maintenance of mechanical equipment. Accordingly, the performance of a learning model depends on how effectively the noise of the data is removed. In this study, the noise of the data was removed using the Denoising Auto Encoder (DAE) technique which does not include the characteristic extraction process in preprocessing time series data. In addition, the performance was compared with that of the Wavelet Transform, which is widely used for machine signal processing. The performance comparison was conducted by calculating the failure detection rate. For a more accurate comparison, a classification performance evaluation criterion, the F-1 Score, was calculated. Failure data were detected using the One-Class SVM technique. The performance comparison, revealed that the DAE technique performed better than the Wavelet Transform technique in terms of failure diagnosis and error rate.
With the development of the IoT industry, different types of time series data are being generated in various industries, and it is evolving into research that reproduces and utilizes it through re-integration. In addition, due to data processing speed and issues of the utilization system in the actual industry, there is a growing tendency to compress the size of data when using time series data and integrate it. However, since the guidelines for integrating time series data are not clear and each characteristic such as data description time interval and time section is different, it is difficult to use it after batch integration. In this paper, two integration methods are proposed based on the integration criteria setting method and the problems that arise during integration of time series data. Based on this, integration framework of a heterogeneous time series data was constructed that is considered the characteristics of time series data, and it was confirmed that different heterogeneous time series data compressed can be used for integration and various machine learning.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.355-357
/
2022
In this paper, as a positioning technology for predicting the movement path of a moving object using a recurrent neural network (RNN) model, which is a deep learning network, in an indoor environment, continuous location information is used to predict the path of a moving vehicle within a local path. We propose a movement path generation technique that can reduce decision errors. In the case of an indoor environment where GPS information is not available, the data set must be continuous and sequential in order to apply the RNN model. However, Wi-Fi radio fingerprint data cannot be used as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, we propose a movement path generation technique for a vehicle moving a local path in an indoor environment by giving the necessary sequential location continuity to the RNN model.
Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.123-130
/
2022
Recently, studies on the detection and classification of Android malware based on API Call sequence have been actively carried out. However, API Call sequence based malware classification has serious limitations such as excessive time and resource consumption in terms of malware analysis and learning model construction due to the vast amount of data and high-dimensional characteristic of features. In this study, we analyzed various classification models such as LightGBM, Random Forest, and k-Nearest Neighbors after significantly reducing the dimension of features using PCA(Principal Component Analysis) for CICAndMal2020 dataset containing vast API Call information. The experimental result shows that PCA significantly reduces the dimension of features while maintaining the characteristics of the original data and achieves efficient malware classification performance. Both binary classification and multi-class classification achieve higher levels of accuracy than previous studies, even if the data characteristics were reduced to less than 1% of the total size.
Kim, Dong-Keon;Kim, Donghee;Jang, Seungwoo;Shyn, Sung Kuk;Kim, Kwangsu
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.35-37
/
2021
Analyzing and predicting foreign tourists' demand is a crucial research topic in the tourism industry because it profoundly influences establishing and planning tourism policies. Since foreign tourist data is influenced by various external factors, it has a characteristic that there are many subtle changes over time. Therefore, in recent years, research is being conducted to design a prediction model by reflecting various external factors such as economic variables to predict the demand for tourists inbound. However, the regression analysis model and the recurrent neural network model, mainly used for time series prediction, did not show good performance in time series prediction reflecting various variables. Therefore, we design a foreign tourist demand prediction model that complements these limitations using a convolutional neural network. In this paper, we propose a model that predicts foreign tourists' demand by designing a one-dimensional convolutional neural network that reflects foreign tourist data for the past ten years provided by the Korea Tourism Organization and additionally collected external factors as input variables.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.3C
/
pp.97-104
/
2009
In this study, artificial neural network was performed using the data of soils characteristic value, standard penetration test, and field permeability test of the 12 embankment that are located in the near Nak-dong and Kum-ho river to estimate the coefficient of field permeability of river embankment. The 89 data of total 108, 82% was used in learning step, and the other 19 data was used in estimation step. Also the results of generally used empirical equations were compared with those of artificial neural network for evaluation of application. As results, all of the coefficient of field permeability by empirical equation showed below 0.4 in terms of the coefficient of correlation with the measured values, but the coefficient of correlation of the predicted results by artificial neural network was up 0.8 in the all case. Therefore artificial neural network could predict more the precise field permeability well than the empirical equations.
Various efforts are needed to prevent accidents because ship collisions can cause various negative situations such as economic losses and casualties. Therefore, research to prevent accidents is being actively conducted, and in this study, new leading indicators for preventing ship collision accidents is proposed. In previous studies, the risk of collision was expressed in consideration of the distance between ships in a specific sea area, but there is a disadvantage that a new model needs to be developed to apply this to other sea areas. In this study, the density-based ship domain DESD (Density-based Empirical Ship Domain) including the environment and operating characteristics of the sea area was defined using AIS (Automatic Identification System) data, which is ship operation information. Deep clustering is applied to two-dimensional DESDs created for each sea area to cluster the seas with similar operating environments. Through the analysis of the relationship between clustered sea areas and ship collision accidents, it was statistically tested that the occurrence of accidents varies by characteristic of each sea area, and it was proved that DESD can be used as a leading indicator of accidents.
In this paper, a time series machine learning model, Long Short Term Memory (LSTM), is applied into the bubble flow noise data and the underwater projectile launch noise data to predict missing values of time-series underwater noise data. The former is mixed with bubble noise, flow noise, and fluid-induced interaction noise measured in a pipe and can be classified into three types. The latter is the noise generated when an underwater projectile is ejected from a launch tube and has a characteristic of instantaenous noise. For such types of noise, a data-driven model can be more useful than an analytical model. We constructed an LSTM model with given data and evaluated the model's performance based on the number of hidden units, the number of input sequences, and the decimation factor of signal. It is shown that the optimal LSTM model works well for new data of the same type.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.264-266
/
2022
In order to apply the RNN model to the radio fingerprint-based indoor path generation technology, the data set must be continuous and sequential. However, Wi-Fi radio fingerprint data is not suitable as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, continuity information of sequential positions should be given. For this purpose, clustering is possible through classification of each region based on signal data. At this time, the continuity information between the clusters does not contain information on whether actual movement is possible due to the limitation of radio signals. Therefore, correlation information on whether movement between adjacent clusters is possible is required. In this paper, a deep learning network, a recurrent neural network (RNN) model, is used to predict the path of a moving object, and it reduces errors that may occur when predicting the path of an object by generating continuous location information for path generation in an indoor environment. We propose a method of giving correlation between clustering for generating an improved moving path that can avoid erroneous path prediction that cannot move on the predicted path.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.