• Title/Summary/Keyword: Learning characteristic

Search Result 587, Processing Time 0.028 seconds

The Study on the characteristics of transcription Culture on YouTube (유튜브(YouTube)에 나타난 필사 문화의 특성)

  • Cho, Young-kwon
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.291-303
    • /
    • 2021
  • The study tried to examine the characteristics of transcription culture on YouTube through narrative analysis methods. The study found five meaningful features in YouTube's transcription culture. YouTube's transcription culture was first characterized by efficient writing and learning skills. Second, there was a characteristic of a transcription to read and understand text more deeply. Third, it had the characteristics of five strategies to advance my writing. Fourth, YouTubers had time to self-heal and comfort through transcription. Fifth, YouTube's transcription culture has expanded and developed into left-handed writing and digital writing. The characteristics of these YouTubers' transcription culture are expected to enrich the transcription culture that has been handed down for many years.

Vibration Data Denoising and Performance Comparison Using Denoising Auto Encoder Method (Denoising Auto Encoder 기법을 활용한 진동 데이터 전처리 및 성능비교)

  • Jang, Jun-gyo;Noh, Chun-myoung;Kim, Sung-soo;Lee, Soon-sup;Lee, Jae-chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1088-1097
    • /
    • 2021
  • Vibration data of mechanical equipment inevitably have noise. This noise adversely af ects the maintenance of mechanical equipment. Accordingly, the performance of a learning model depends on how effectively the noise of the data is removed. In this study, the noise of the data was removed using the Denoising Auto Encoder (DAE) technique which does not include the characteristic extraction process in preprocessing time series data. In addition, the performance was compared with that of the Wavelet Transform, which is widely used for machine signal processing. The performance comparison was conducted by calculating the failure detection rate. For a more accurate comparison, a classification performance evaluation criterion, the F-1 Score, was calculated. Failure data were detected using the One-Class SVM technique. The performance comparison, revealed that the DAE technique performed better than the Wavelet Transform technique in terms of failure diagnosis and error rate.

Introduction and Utilization of Time Series Data Integration Framework with Different Characteristics (서로 다른 특성의 시계열 데이터 통합 프레임워크 제안 및 활용)

  • Jisoo, Hwanga;Jaewon, Moon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.872-884
    • /
    • 2022
  • With the development of the IoT industry, different types of time series data are being generated in various industries, and it is evolving into research that reproduces and utilizes it through re-integration. In addition, due to data processing speed and issues of the utilization system in the actual industry, there is a growing tendency to compress the size of data when using time series data and integrate it. However, since the guidelines for integrating time series data are not clear and each characteristic such as data description time interval and time section is different, it is difficult to use it after batch integration. In this paper, two integration methods are proposed based on the integration criteria setting method and the problems that arise during integration of time series data. Based on this, integration framework of a heterogeneous time series data was constructed that is considered the characteristics of time series data, and it was confirmed that different heterogeneous time series data compressed can be used for integration and various machine learning.

Movement Route Generation Technique through Location Area Clustering (위치 영역 클러스터링을 통한 이동 경로 생성 기법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.355-357
    • /
    • 2022
  • In this paper, as a positioning technology for predicting the movement path of a moving object using a recurrent neural network (RNN) model, which is a deep learning network, in an indoor environment, continuous location information is used to predict the path of a moving vehicle within a local path. We propose a movement path generation technique that can reduce decision errors. In the case of an indoor environment where GPS information is not available, the data set must be continuous and sequential in order to apply the RNN model. However, Wi-Fi radio fingerprint data cannot be used as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, we propose a movement path generation technique for a vehicle moving a local path in an indoor environment by giving the necessary sequential location continuity to the RNN model.

  • PDF

Light-weight Classification Model for Android Malware through the Dimensional Reduction of API Call Sequence using PCA

  • Jeon, Dong-Ha;Lee, Soo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.123-130
    • /
    • 2022
  • Recently, studies on the detection and classification of Android malware based on API Call sequence have been actively carried out. However, API Call sequence based malware classification has serious limitations such as excessive time and resource consumption in terms of malware analysis and learning model construction due to the vast amount of data and high-dimensional characteristic of features. In this study, we analyzed various classification models such as LightGBM, Random Forest, and k-Nearest Neighbors after significantly reducing the dimension of features using PCA(Principal Component Analysis) for CICAndMal2020 dataset containing vast API Call information. The experimental result shows that PCA significantly reduces the dimension of features while maintaining the characteristics of the original data and achieves efficient malware classification performance. Both binary classification and multi-class classification achieve higher levels of accuracy than previous studies, even if the data characteristics were reduced to less than 1% of the total size.

A Study on Artificial Intelligence Model for Forecasting Daily Demand of Tourists Using Domestic Foreign Visitors Immigration Data (국내 외래객 출입국 데이터를 활용한 관광객 일별 수요 예측 인공지능 모델 연구)

  • Kim, Dong-Keon;Kim, Donghee;Jang, Seungwoo;Shyn, Sung Kuk;Kim, Kwangsu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.35-37
    • /
    • 2021
  • Analyzing and predicting foreign tourists' demand is a crucial research topic in the tourism industry because it profoundly influences establishing and planning tourism policies. Since foreign tourist data is influenced by various external factors, it has a characteristic that there are many subtle changes over time. Therefore, in recent years, research is being conducted to design a prediction model by reflecting various external factors such as economic variables to predict the demand for tourists inbound. However, the regression analysis model and the recurrent neural network model, mainly used for time series prediction, did not show good performance in time series prediction reflecting various variables. Therefore, we design a foreign tourist demand prediction model that complements these limitations using a convolutional neural network. In this paper, we propose a model that predicts foreign tourists' demand by designing a one-dimensional convolutional neural network that reflects foreign tourist data for the past ten years provided by the Korea Tourism Organization and additionally collected external factors as input variables.

  • PDF

Prediction of Field Permeability Using by Artificial Neural Network (인공신경망을 이용한 현장투수계수 예측)

  • Kim, Young-Su;Jung, Sung-Gwan;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.97-104
    • /
    • 2009
  • In this study, artificial neural network was performed using the data of soils characteristic value, standard penetration test, and field permeability test of the 12 embankment that are located in the near Nak-dong and Kum-ho river to estimate the coefficient of field permeability of river embankment. The 89 data of total 108, 82% was used in learning step, and the other 19 data was used in estimation step. Also the results of generally used empirical equations were compared with those of artificial neural network for evaluation of application. As results, all of the coefficient of field permeability by empirical equation showed below 0.4 in terms of the coefficient of correlation with the measured values, but the coefficient of correlation of the predicted results by artificial neural network was up 0.8 in the all case. Therefore artificial neural network could predict more the precise field permeability well than the empirical equations.

A Study on the Applicability of Safety Performance Indicators using the Density-Based Ship Domain (밀도기반 선박 도메인을 이용한 안전 성능 지표 활용성 연구)

  • Yeong-Jae Han;Sunghyun Sim;Hyerim Bae
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.89-97
    • /
    • 2022
  • Various efforts are needed to prevent accidents because ship collisions can cause various negative situations such as economic losses and casualties. Therefore, research to prevent accidents is being actively conducted, and in this study, new leading indicators for preventing ship collision accidents is proposed. In previous studies, the risk of collision was expressed in consideration of the distance between ships in a specific sea area, but there is a disadvantage that a new model needs to be developed to apply this to other sea areas. In this study, the density-based ship domain DESD (Density-based Empirical Ship Domain) including the environment and operating characteristics of the sea area was defined using AIS (Automatic Identification System) data, which is ship operation information. Deep clustering is applied to two-dimensional DESDs created for each sea area to cluster the seas with similar operating environments. Through the analysis of the relationship between clustered sea areas and ship collision accidents, it was statistically tested that the occurrence of accidents varies by characteristic of each sea area, and it was proved that DESD can be used as a leading indicator of accidents.

Prediction of time-series underwater noise data using long short term memory model (Long short term memory 모델을 이용한 시계열 수중 소음 데이터 예측)

  • Hyesun Lee;Wooyoung Hong;Kookhyun Kim;Keunhwa Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, a time series machine learning model, Long Short Term Memory (LSTM), is applied into the bubble flow noise data and the underwater projectile launch noise data to predict missing values of time-series underwater noise data. The former is mixed with bubble noise, flow noise, and fluid-induced interaction noise measured in a pipe and can be classified into three types. The latter is the noise generated when an underwater projectile is ejected from a launch tube and has a characteristic of instantaenous noise. For such types of noise, a data-driven model can be more useful than an analytical model. We constructed an LSTM model with given data and evaluated the model's performance based on the number of hidden units, the number of input sequences, and the decimation factor of signal. It is shown that the optimal LSTM model works well for new data of the same type.

A Study on Information Expansion of Neighboring Clusters for Creating Enhanced Indoor Movement Paths (향상된 실내 이동 경로 생성을 위한 인접 클러스터의 정보 확장에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.264-266
    • /
    • 2022
  • In order to apply the RNN model to the radio fingerprint-based indoor path generation technology, the data set must be continuous and sequential. However, Wi-Fi radio fingerprint data is not suitable as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, continuity information of sequential positions should be given. For this purpose, clustering is possible through classification of each region based on signal data. At this time, the continuity information between the clusters does not contain information on whether actual movement is possible due to the limitation of radio signals. Therefore, correlation information on whether movement between adjacent clusters is possible is required. In this paper, a deep learning network, a recurrent neural network (RNN) model, is used to predict the path of a moving object, and it reduces errors that may occur when predicting the path of an object by generating continuous location information for path generation in an indoor environment. We propose a method of giving correlation between clustering for generating an improved moving path that can avoid erroneous path prediction that cannot move on the predicted path.

  • PDF