최근 디지털 플랫폼을 활용한 민생 위협 범죄는 '15년 약 14만여 건, '16년 약 15만여 건 등 사이버범죄 지속 증가 추이이며 전통적인 수사기법을 통한 온라인 범죄 대응에 한계가 있다고 판단되고 있다. 현행 수기 온라인 검색 및 인지 수사 방식만으로는 빠르게 변화하는 민생 위협 범죄에 능동적으로 대처 할 수 없으며, 소셜 미디어 특성상 불특정 다수에게 게시되는 콘텐츠로 이루어 졌다는 점에서 더욱 어려움을 겪고 있다. 본 연구는 민생 침해 범죄가 발생하는 온라인 미디어의 특성을 고려한 콘텐츠 웹 수집 방식 중 사이트 중심의 수집과 Open API를 통한 방식을 제시한다. 또한 불법콘텐츠의 특성상 신속히 게시되고 삭제되며 신조어, 변조어 등이 다양하고 빠르게 생성되기 때문에 수작업 등록을 통한 사전 기반 형태소 분석으로는 빠른 인지가 어려운 상황이다. 이를 해소 하고자 온라인에서 벌어지는 민생 침해 범죄를 게시하는 불법 콘텐츠를 빠르게 인지하고 대응하기 위한 데이터 전처리인 WPM(Word Piece Model)을 통하여 기존의 사전 기반의 형태소 분석에서 토크나이징 방식을 제시한다. 데이터의 분석은 불법 콘텐츠의 수사를 위한 지도학습 기반의 분류 알고리즘 모델을 활용, 투표 기반(Voting) 앙상블 메소드를 통하여 최적의 정확도를 검증하고 있다. 본 연구에서는 민생경제를 침해하는 범죄를 사전에 인지하기 위하여 불법 다단계에 대한 사례를 중심으로 분류 알고리즘 모델을 활용하고, 소셜 데이터의 수집과 콘텐츠 수사에 대하여 효과적으로 대응하기 위한 실증 연구를 제시하고 있다.
고객의 구매 의사결정에 영향을 주는 온라인 리뷰의 부적절한 조작을 통해 이익을 얻고자 하는 기업 또는 온라인 판매자들 때문에, 리뷰의 신뢰성은 온라인 거래에서 매우 중요한 이슈가 되었다. 온라인 쇼핑몰 등에서 온라인 리뷰에 대한 소비자들의 의존도가 높아짐에 따라 많은 연구들이 조작된 리뷰를 탐지하는 방법에 개발하고자 하였다. 기존의 연구들은 온라인 리뷰를 기반으로 정상 리뷰와 조작된 리뷰를 대상으로 기계학습으로 이용함으로써 조작된 리뷰를 탐지하는 모형을 제시하였다. 기계학습은 데이터를 이용하여 이진분류 문제에서 탁월한 성능을 보여왔으나, 학습에 충분한 데이터를 확보할 수 있는 환경에서만 이러한 성능을 기대할 수 있었다. 조작된 리뷰는 학습용으로 사용할 수 있는 데이터가 충분하지 못하며, 이는 기계학습이 충분한 학습을 할 수 없다는 치명적 약점으로 내포하게 된다. 본 연구에서는 기계학습이 불균형 데이터 셋으로 인한 학습의 저하를 방지할 수 있는 방안으로 부족한 조작된 리뷰를 인공지능을 이용하여 생성하고 이를 기반으로 균형된 데이터 셋에서 기계학습을 학습하여 조작된 리뷰를 탐지하는 방안을 제시하였다. 파인 튜닝된 GPT-3는 초거대 인공지능으로 온라인 플랫폼의 리뷰를 생성하여 데이터 불균형 문제를 해결하는 오버샘플링 접근방법으로 사용되었다. GPT-3로 생성한 온라인 리뷰는 기존 리뷰를 기반으로 인공지능이 작성한 리뷰로써, 본 연구에서 사용된 로짓, 의사결정나무, 인공신경망의 성능을 개선시키는 것을 SMOTE와 단순 오버샘플링과 비교하여 실증분석을 통해서 확인하였다.
사물인터넷(Internet of Things)시대에는 다양한 사물이 연결되어 사물들 스스로가 데이터를 획득하여 이를 바탕으로 학습하고 동작한다. 이는 사물이 사람의 모습을 닮아가고 있다고 볼 수 있고 변화한 사물과 사람이 어떻게 소통하는가를 설계하는 것이 핵심 이슈로 떠오르고 있다. 이러한 IoT 환경이 도래함에 따라 UI 디자인 분야에서도 많은 연구가 진행되었다. 멀티모달리티(Multi-modality)와 인터유저빌리티(Interusability) 등의 키워드를 통해서 UI 분야에서도 복합적인 요소를 고려하려는 연구가 진행됐음을 알 수 있다. 하지만 기존의 UI 디자인 방법론으로는 IoT 환경에서 사용자 인터페이스(UI)를 설계할 때 사물, 사람, 데이터가 상호작용하는 방식에 대해서 구조화하고 테스트하는데 한계가 있다. 따라서 본 연구에서 새로운 UI 프로토타이핑 방법을 제안하였다. 본 논문의 주요 분석과 연구는 다음과 같다: (1) 먼저 사물의 행동 프로세스를 정의하였다. (2) 행동 프로세스를 토대로 기존의 IoT 제품을 분석하였다. (3) 사물성격(Personality of Things)유형을 구분 지을 수 있는 프레임워크를 제작하였다. (4) 프레임워크를 바탕으로 사물성격(Personality of Things) 유형을 도출하였다. (5) 3개의 대표 사물성격(Personality of Things)을 실제 스마트 홈 서비스에 적용하여 프로토타이핑 테스트를 해보았다. 본 연구는 새로운 UI 프로토타이핑 방법을 제안하여 더 총체적인 방식으로 IoT 서비스에 대한 사용자 경험(UX)을 확인할 수 있었다는 데 의의가 있다. 또한, 향후 본 연구를 발전시켜 인공지능(AI) 기술이 발전한 환경에서 지능화된 서비스의 정체성(Identity) 확립의 도구로 사물성격(Personality of Things) 개념을 활용할 수 있을 것이라 생각한다.
본 논문에서는 소프트웨어 환경에서 비트연산을 최적화 하고 DNN으로 응용하는 방법을 제안한다. 이를 위해 비트연산 최적화를 위한 패킹 함수와 DNN으로 응용을 위한 마스킹 행렬 곱 연산을 제안한다. 패킹 함수의 경우는 32bit의 실제 가중치값을 2bit로 변환하는 연산을 수행한다. 연산을 수행할 땐, 임계값 비교 연산을 통해 2bit 값으로 변환한다. 이 연산을 수행하면 4개의 32bit값이 1개의 8bit 메모리에 들어가게 된다. 마스킹 행렬 곱 연산의 경우 패킹된 가중치 값과 일반 입력 값을 곱하기 위한 특수한 연산으로 이루어져 있다. 그리고 각각의 연산은 GPU 가속기를 이용해 병렬로 처리되게 하였다. 그 결과 HandWritten 데이터 셋에 환경에서 32bit DNN 모델에 비해 약 16배의 메모리 절약을 볼 수 있었다. 그럼에도 정확도는 32bit 모델과 비슷한 1% 이내의 차이를 보였다.
온라인 패션 시장의 빠른 성장과 이로 인한 온라인 선택의 확대로 인해 소비자들은 더욱 개인화된 추천 서비스에 대해 요구가 커지고 있음에도 불구하고 판매자는 수많은 소비자를 개별적으로 직접 대응할 수 없다는 문제점이 있다. 소비자의 이러한 개인화 니즈를 충족시키는 방안으로 이미지에 대한 태깅이 이루어지고 있으나 사람이 태깅하는 경우 사람마다 태깅이 매우 주관적으로 이뤄지고 있고 인공지능 태깅은 단어가 매우 제한적으로 사용자의 니즈를 충족시켜주지 못하고 있다. 이러한 문제를 해결하기 위해 인공지능으로 이미지에 포함된 제품의 형태, 속성, 감성 정보를 인식하고 이러한 정보를 코드화하고 코드의 조합으로 그 이미지가 가지고 있는 모든 정보를 나타낼 수 있는 알고리즘을 설계하였다. 이 알고리즘을 통해서 지금까지 획득이 불가능했던 패션 이미지의 감성, 패션 이미지가 표현하는 TPO 정보 등 이미지가 가지고 있는 다양한 정보를 실시간으로 획득하는 것이 가능하게 되었다. 이러한 정보를 기반으로 소비자의 취향을 분석하는 단계에서 넘어가 소비자의 취향에 당시의 유행, TPO 정보까지 결합하는 초개인화된 의류 추천이 가능해진다.
이 연구는 국내의 교과중심 교육과정체제에서 정보영역 교육과정을 어떻게 구성해야 하는지에 대한 방향성에 대한 것이다. 이를 위해 교과중심과 역량중심 교육과정을 비교 분석하였으며 2개의 유형에서 정보영역이 어떻게 편제되어 있는지를 제시하였다. 국내 교육과정은 역량을 강조하지만 국가수준의 교육목표 제시, 교과학습모형, 교과서 등을 강조하고 있어서 교과중심 교육과정에 치우친 형태로 판단하였다. 정보영역 교과중심 교육과정 사례로 초등 실과과의 정보영역, 중학교 정보교과를 제시하였으며 SW융합교육과정은 진보적인 교육과정 사례로 제시하였다. 이와 같은 여건에서 SW AI 내용을 포함하는 정보영역을 통해 학습자가 미래 지능형사회에서 주도적인 생활을 하기 위해서는 컴퓨터과학을 모학문으로 하여 교과중심 관점으로 명시적으로 기술되어야 함을 강조하였다.
최근 건설 현장의 안전사고 비율은 전체 산업에서 가장 높은 비중을 차지한다. 인공지능 기술을 건설 현장에 접목하기 위해서는 기초 학습 자료로 활용될 수 있는 데이터셋 확보가 필수적이다. 본 논문에서는 실제 현장 확보를 통해 원천 데이터를 수집하였으며, 토목 현장에서 주로 운용되고 있는 주요 건설장비 객체를 선정하고 약 9만장의 정지영상 데이터셋 가공을 통해 최적의 학습 데이터셋 구축을 완료하였다. 또한, 객체 인식분야의 대표적인 모델인 YOLO를 활용하여 구축된 데이터의 검증 작업을 수행하였고 90 % 근접한 검출 성능을 확인해 데이터 신뢰성을 확보하였다. 본 연구에서 사용되는 학습 데이터셋은 공공데이터포털에서 활용 가능하도록 공개를 완료하였다. 본 데이터셋은 향후 건설안전 분야의 객체 인식 기술의 건설현장 적용을 위한 기반 데이터로 활용 가능하리라 판단된다.
본 연구는 초등학교 저학년 아동의 수학적 의사소통 지도의 방향을 모색하고 의사소통에 대한 구체물 활용의 효과에 대하여 새로운 방향을 제시하는데 목적을 두고 수학적 의사소통에는 어떠한 특성이 있으며, 구체물이 수학적 의사소통에 어떠한 영향을 미치는지, 수학 학습에 구체물이 어떠한 영향을 미치는지 알아보고자 하였다. 의사소통 특성으로는 수학적 기호나 용어가 익숙하지 못하고 대체 용어를 사용하고 생활 속의 경험을 학습에 잘 적용시키며, 소수 아동들이 수업을 주도하며, 소집단에서 이루어지는 대화의 방향이 과제 해결 중심으로 이루어지지 못하고 있다. 구체물은 말하기 활동을 촉진시키며, 오류를 쉽게 확인하게 하며 추측과 예상 활동을 수월하게 하고 소집단 활동이 활발히 이루어지게 한다. 반면에 구체물을 활용하면서 교사에게 집중하지 않고 이탈행동을 보임으로써 듣기 활동이 제대로 이루어지지 않고 있다. 학습에 주는 영향으로는 참여도를 높이고, 부진아 학습을 돕고, 개념 형성에 도움을 준다. 또한 과제 해결 능력에 따라 수준별 학습이 쉽게 이루어지도록 한다. 그러나 구체물에 따라 학습에 활용 정도가 다르게 나타났으며 아동들은 절차적 지식보다 개념적 지식을 더 중시하고 있었다. 따라서 구체물은 수학 수업에서 의사소통을 활발하게 이루어지게 도와주며 수학 학습에도 많은 영향을 미치게 되므로 저학년의 수학 수업에서는 구체물의 활용이 꼭 필요하다. 또한 교사는 이러한 아동들의 의사소통의 특성을 고려하여 의사소통 활동이 활발히 이루어질 수 있는 교수 학습 방법을 모색해야할 것이다.된다0.9 mg/ml의 수준에서 측정되었고, 제 11세대에서는 유즙내 인간 hIL-10의 발현 수준을 분석하였을 때, 그 농도는 평균 5.7± 1.5 mg/ml의 수준에서 측정되었고, 제 12세대에서는 유즙내 인간 hIL-10의 발현 수준을 분석하였을 때, 그 농도는 평균 6.3±3.5 mg/ml의 수준으로 측정되었고, 제 13세대에서는 유즙내 인간 hIL-10의 발현 수준을 분석하였을 때, 그 농도는 평균 6.8±4.5 mg/ml의 수준으로 측정되었고, 제 14세대에서는 유즙내 인간 hIL-10의 발현 수준을 분석하였을 때, 그 농도는 평균 6.8±3.1 mg/ml의 수준으로 측정되었다. 이러한 수준은 제 1 세대의 것보다 높은 결과로 형질전환 생쥐에서 인간 IL-10 유전자의 발현은 최소한 15 세대까지 지속적으로 유지된다는 것을 알 수 있었으며, 장기 세대까지도 발현수준이 유지될 것으로 판단된다. 이러한 연구결과는 계통으로 확립된 형질전환 동물에 부여된 새로운 유전형질은 지속적으로 후대로 유전될 수 있음을 제시한다.
4차 산업혁명으로 인해 빅데이터가 구축됨에 따라 개인 맞춤형 서비스가 급증했다. 이로 인해 온라인 서비스에서 수집하는 개인정보의 양이 늘어났으며, 사용자들의 개인정보 유출 및 프라이버시 침해 우려가 높아졌다. 온라인 서비스 제공자들은 이용자들의 프라이버시 침해 우려를 해소하기 위해 개인정보 처리방침을 제공하고 있으나, 개인정보 처리방침은 길이가 길고 복잡하여 이용자가 직접 위험 항목을 파악하기 어려운 문제로 인해 오남용되는 경우가 많다. 따라서 자동으로 개인정보 처리방침이 안전한지 여부를 검사할 수 있는 방법이 필요하다. 그러나 종래의 블랙리스트 및 기계학습 기반의 개인정보 처리방침 안전성 검증 기법은 확장이 어렵거나 접근성이 낮은 문제가 있다. 본 논문에서는 문제를 해결하기위해 생성형 인공지능인 GPT-3.5 API를 이용한 개인정보 처리방침 안전성 검증 기법을 제안한다. 새로운 환경에서도 분류 작업을 수행할 수 있고, 전문 지식이 없는 일반인이 쉽게 개인정보 처리방침을 검사할 수 있다는 가능성을 보인다. 실험에서는 블랙리스트 기반 개인정보 처리방침과 GPT 기반 개인정보 처리방침이 안전한 문장과 안전하지 않은 문장의 분류를 얼마나 정확하게 하는지와 분류에 소요된 시간을 측정했다. 실험 결과에 따르면, 제안하는 기법은 종래의 블랙리스트 기반 문장 안전성 검증 기법보다 평균적으로 10.34% 높은 정확도를 보였다.
본 논문에서는 2016년을 기준으로 강화된 터널 방재시설 설치 및 관리지침과, 점차 강화되고 있는 터널 CCTV설치 터널등급 기준과 터널 영상유고감지 시스템의 설치 운용에 대한 요구의 증가 상황을 정리해 보고하였다. 그럼에도, 가동중인 알고리즘 기반의 터널 영상유고감시 시스템의 정상 인지율은 50%가 채 되지 않는 것으로 파악되었으며, 그에 대한 주원인은 터널 내 낮은 조도, 심한 먼지로 인한 영상 선명도 저하, 낮은 CCTV 설치위치로 인한 이동객체의 겹침현상 등으로 파악되었다. 따라서, 본 연구에서는 이러한 열악한 조건에서도 영상유고 정상 인지율을 확보할 수 있는 딥러닝 기반 영상유고감지 시스템을 개발하였으며, 이에 대한 이론적 배경 제시와 시스템의 타당성 검토 연구가 진행되었다. 개발 시스템의 타당성 검토 연구는 터널 방재시설 및 관리지침 내 영상유고감지 항목중 정지 및 역주행 차량을 감지하는 주요 정보인 차량 객체 인식과 보행자 감지를 중심으로 진행되었다. 또한, (1) 동일 터널 내에서 학습과 추론이 이루어 지는 경우와 (2) 다양한 터널의 영상 정보를 통합 학습하고, 각 터널의 영상유고감지에 투입되는 경우, 두개의 시나리오를 설정하여 타당성 검토를 진행하였다. 두 시나리오 모두 일정 시간의 학습 자료와 유사한 상황에 대해서는 열악한 터널환경과 무관하게 그 감지성능이 80% 이상으로 우수하나, 추가 학습 없이 학습된 시간 구간과 멀어질수록 그 추론 성능은 상대적으로 낮은 40% 수준으로 떨어짐을 알 수 있었다. 그러나, 시간이 지남에 따라 자동으로 누적되어 확장되는 영상유고 빅데이터를 반복적으로 학습함으로써, 설치된 영상유고감지 시스템의 보완이나 보정절차 없이도 자동으로 그 영상유고감지 성능이 향상될 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.