• Title/Summary/Keyword: Learning Structure

Search Result 2,209, Processing Time 0.027 seconds

Development of Intelligent OCR Technology to Utilize Document Image Data (문서 이미지 데이터 활용을 위한 지능형 OCR 기술 개발)

  • Kim, Sangjun;Yu, Donghui;Hwang, Soyoung;Kim, Minho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.212-215
    • /
    • 2022
  • In the era of so-called digital transformation today, the need for the construction and utilization of big data in various fields has increased. Today, a lot of data is produced and stored in a digital device and media-friendly manner, but the production and storage of data for a long time in the past has been dominated by print books. Therefore, the need for Optical Character Recognition (OCR) technology to utilize the vast amount of print books accumulated for a long time as big data was also required in line with the need for big data. In this study, a system for digitizing the structure and content of a document object inside a scanned book image is proposed. The proposal system largely consists of the following three steps. 1) Recognition of area information by document objects (table, equation, picture, text body) in scanned book image. 2) OCR processing for each area of the text body-table-formula module according to recognized document object areas. 3) The processed document informations gather up and returned to the JSON format. The model proposed in this study uses an open-source project that additional learning and improvement. Intelligent OCR proposed as a system in this study showed commercial OCR software-level performance in processing four types of document objects(table, equation, image, text body).

  • PDF

Exploration of Socio-Cultural Factors Affecting Korean Adolescents' Motivation (한국 청소년의 학습동기에 영향을 미치는 사회문화적 요인 탐색)

  • Mimi Bong;Hyeyoun Kim;Ji-Youn Shin;Soohyun Lee;Hwasook Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.14 no.1_spc
    • /
    • pp.319-348
    • /
    • 2008
  • Self-efficacy, achievement goals, task value, and attribution are some of the representative motivation constructs that explain adolescents' cognition, affect, and behavioral patterns in achievement settings. These constructs have won researchers' recognition by demonstrating explanatory and predictive utility that transcends various social and cultural milieus learners are exposed to. Korean adolescents' motivation is generally in line with this universal trend and can be described adequately with these constructs. Nonetheless, there also exist a host of indigenous factors that shape these motivation constructs to be uniquely Korean. The purpose of the present article was to explore some of the socio-cultural factors that appear to wield particularly determining effects on Korean adolescents' academic motivation. Review of the relevant literature identified interdependent self-construal, traditional morals of filial piety, familism, educational fervor, academic elitism, and the college entrance system as important cultural, social, and policy-related such factors. Also discussed in this article were the roles of these factors in creating more immediate psychological learning environments for Korean adolescents, such as parent-child relationships, teacher-student relationships, and classroom goal structures.

  • PDF

Concrete Crack Detection Inside Finishing Materials Using Lock-in Thermography (위상 잠금 열화상 기법을 이용한 콘크리트 마감재 내부 균열 검출)

  • Myung-Hun Lee;Ukyong Woo;Hajin Choi;Jong-Chan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.30-38
    • /
    • 2023
  • As the number of old buildings subject to safety inspection increases, the burden on designated institutions and management entities that are responsible for safety management is increasing. Accordingly, when selecting buildings subject to safety inspection, appropriate safety inspection standards and appropriate technology are essential. The current safety inspection standards for old buildings give low scores when it is difficult to confirm damage such as cracks in structural members due to finishing materials. This causes the evaluation results to be underestimated regardless of the actual safety status of the structure, resulting in an increase in the number of aging buildings subject to safety inspection. Accordingly, this study proposed a thermal imaging technique, a non-destructive and non-contact inspection, to detect cracks inside finishing materials. A concrete specimen was produced to observe cracks inside the finishing material using a thermal imaging camera, and thermal image data was measured by exciting a heat source on the concrete surface and cracked area. As a result of the measurement, it was confirmed that it was possible to observe cracks inside the finishing material with a width of 0.3mm, 0.5mm, and 0.7mm, but it was difficult to determine the cracks due to uneven temperature distribution due to surface peeling and peeling of the wallpaper. Accordingly, as a result of performing data analysis by deriving the amplitude and phase difference of the thermal image data, clear crack measurement was possible for 0.5mm and 0.7mm cracks. Based on this study, we hope to increase the efficiency of field application and analysis through the development of technology using big data-based deep learning in the diagnosis of internal crack damage in finishing materials.

Detection of video editing points using facial keypoints (얼굴 특징점을 활용한 영상 편집점 탐지)

  • Joshep Na;Jinho Kim;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.15-30
    • /
    • 2023
  • Recently, various services using artificial intelligence(AI) are emerging in the media field as well However, most of the video editing, which involves finding an editing point and attaching the video, is carried out in a passive manner, requiring a lot of time and human resources. Therefore, this study proposes a methodology that can detect the edit points of video according to whether person in video are spoken by using Video Swin Transformer. First, facial keypoints are detected through face alignment. To this end, the proposed structure first detects facial keypoints through face alignment. Through this process, the temporal and spatial changes of the face are reflected from the input video data. And, through the Video Swin Transformer-based model proposed in this study, the behavior of the person in the video is classified. Specifically, after combining the feature map generated through Video Swin Transformer from video data and the facial keypoints detected through Face Alignment, utterance is classified through convolution layers. In conclusion, the performance of the image editing point detection model using facial keypoints proposed in this paper improved from 87.46% to 89.17% compared to the model without facial keypoints.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Salient Region Detection Algorithm for Music Video Browsing (뮤직비디오 브라우징을 위한 중요 구간 검출 알고리즘)

  • Kim, Hyoung-Gook;Shin, Dong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.112-118
    • /
    • 2009
  • This paper proposes a rapid detection algorithm of a salient region for music video browsing system, which can be applied to mobile device and digital video recorder (DVR). The input music video is decomposed into the music and video tracks. For the music track, the music highlight including musical chorus is detected based on structure analysis using energy-based peak position detection. Using the emotional models generated by SVM-AdaBoost learning algorithm, the music signal of the music videos is classified into one of the predefined emotional classes of the music automatically. For the video track, the face scene including the singer or actor/actress is detected based on a boosted cascade of simple features. Finally, the salient region is generated based on the alignment of boundaries of the music highlight and the visual face scene. First, the users select their favorite music videos from various music videos in the mobile devices or DVR with the information of a music video's emotion and thereafter they can browse the salient region with a length of 30-seconds using the proposed algorithm quickly. A mean opinion score (MOS) test with a database of 200 music videos is conducted to compare the detected salient region with the predefined manual part. The MOS test results show that the detected salient region using the proposed method performed much better than the predefined manual part without audiovisual processing.

Verification Test of High-Stability SMEs Using Technology Appraisal Items (기술력 평가항목을 이용한 고안정성 중소기업 판별력 검증)

  • Jun-won Lee
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.79-96
    • /
    • 2018
  • This study started by focusing on the internalization of the technology appraisal model into the credit rating model to increase the discriminative power of the credit rating model not only for SMEs but also for all companies, reflecting the items related to the financial stability of the enterprises among the technology appraisal items. Therefore, it is aimed to verify whether the technology appraisal model can be applied to identify high-stability SMEs in advance. We classified companies into industries (manufacturing vs. non-manufacturing) and the age of company (initial vs. non-initial), and defined as a high-stability company that has achieved an average debt ratio less than 1/2 of the group for three years. The C5.0 was applied to verify the discriminant power of the model. As a result of the analysis, there is a difference in importance according to the type of industry and the age of company at the sub-item level, but in the mid-item level the R&D capability was a key variable for discriminating high-stability SMEs. In the early stage of establishment, the funding capacity (diversification of funding methods, capital structure and capital cost which taking into account profitability) is an important variable in financial stability. However, we concluded that technology development infrastructure, which enables continuous performance as the age of company increase, becomes an important variable affecting financial stability. The classification accuracy of the model according to the age of company and industry is 71~91%, and it is confirmed that it is possible to identify high-stability SMEs by using technology appraisal items.

Studying the Comparative Analysis of Highway Traffic Accident Severity Using the Random Forest Method. (Random Forest를 활용한 고속도로 교통사고 심각도 비교분석에 관한 연구)

  • Sun-min Lee;Byoung-Jo Yoon;WutYeeLwin
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.156-168
    • /
    • 2024
  • Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.

Study on the 'innovation' in higher education under the national university innovation support project (대학혁신지원사업에서 '혁신'은 어디에 있는가? :부·울·경 지역 대학혁신전략을 중심으로)

  • Wongyeum Cho;Yeongyo Cho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.519-531
    • /
    • 2024
  • The purpose of this study is to analyze the aspects and characteristics of educational innovation planned and implemented at the university site targeting universities in Busan, Ulsan, and Gyeongnam, and to explore their limitations and tasks. For this purpose, we analyzed the contents of innovation strategy programs among the plans of 17 universities in the national innovation support projects in Busan, Ulsan, and Gyeongnam area. First, the university innovation strategy was divided into input, process, infrastructure, and other factors, and among them, the process factor was divided into education, research, and industry-university cooperation to examine the aspects and characteristics of innovation. As a result of the study, the aspects of university innovation at universities in Busan, Ulsan, and Gyeongnam were analyzed in the areas of education, research, and industry-academia cooperation. Characteristics of innovation were emphasis on convergence education, competency development, smart system foundation, introduction of innovative teaching and learning techniques, consumer-centeredness, and regional linkage. The limitations and tasks of university innovation revealed through the research are as follows. First, a specialized university innovation business structure should be prepared in consideration of the context of local universities. Second, established strategies with high innovativeness must be implemented and sustained, and consensus among members is required for this. Third, the innovation of universities should not mean the centralization of academics, and the role and efforts of universities as a research institutions should be improved. Fourth, it should not be overlooked that more important than the visible innovation strategy of university innovation is the education innovation that occurs directly to students as a result of the education effect.

A Study on the Subjectivity of Parenting Experience of Parents with Adolescent Children (사춘기 자녀를 둔 부모의 양육경험에 관한 주관성 연구)

  • YOUNG HEE KIM;HYANG CHOI
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.373-381
    • /
    • 2024
  • We confirmed that the children affected by child abuse, which has recently become an issue in the counseling field, were the highest in the ages of 10-17, and the number of occurrences by parents was the highest. We tried to understand the hardships of parents with adolescent children while conducting counseling and parental education to understand the difficulties of parenting experiences that play an important role in growing children. Therefore, this study attempted to analyze the subjective perception types and characteristics of each type of parenting experience of parents with adolescent children using the Q methodology. After forming a Q population and extracting the 33-question statement of the Q sample, the P sample was classified into the Q sample of 35 parents with adolescent children, and the perception type analysis was conducted with the QUANL program. As a result of our study, it was found that Type 1 was the unconditional love and understanding type, which was recognized as a process of endless understanding of children, Type 2 was the "reflection and change type," which recognizes empathy with children, communication, and parental reflection and change, Type 3 was the "learning and psychological independence assistance type," which recognizes that children should be psychologically independent and grow, and Type 4 was the "regret and identity confusion type," which recognizes regret about raising children in childhood and identity confusion as parents. Our study is meaningful in that it classified the subjective perception structure of parenting experiences perceived by parents with adolescent children by type. It is expected that this subjectivity study on parenting experiences will be used as basic data for parental education and parental counseling to raise adolescent children.