빅데이터의 병렬분산처리 시스템을 위한 아파치 하둡 환경을 구축하기 위해서는 다수의 컴퓨터를 연결하여 노드를 구성하거나, 하나의 컴퓨터에 다수의 가상 노드 구성을 통해 클라우딩 환경을 구축하여야 한다. 그러나 이러한 시스템을 교육 환경에서 실습용으로 구축하는 것은 복잡한 시스템 구성과 비용적인 측면에서 많은 제약이 따른다. 따라서 빅데이터 처리 분야의 입문자들과 교육기관의 실습용으로 사용할 수 있는 실용적이고 저렴한 학습 시스템의 개발이 시급하다. 본 연구에서는 라즈베리파이 보드를 기반으로 하둡과 NoSQL과 같은 빅데이터 처리 및 분석 실습이 가능한 빅데이터 병렬분산처리 학습시스템을 설계 및 구현하였다. 구현된 빅데이터 병렬분산처리시스템은 교육현장과 빅데이터를 시작하는 입문자들에게 유용한 시스템이 될 것으로 기대된다.
본 연구는 초등학교에서 정보처리 능력 향상을 위한 교수 방법에 대한 연구이다. 현 시대의 학생들은 정보의 홍수 속에서 '정보를 활용하여 새로운 지식을 창출해 낼 수 있느냐?' 하는 정보 처리 능력이 중요하게 요구된다. 그러나 초등컴퓨터 교육 현장은 '정보 처리 능력'에 대한 교육이 미비한 실정이다. 본 연구는 Barrow의 문제해결학습 모형을 적용하여 정보처리 능력을 신장 시킬 수 있는 방안을 제안하고 적용하였다. 학생들은 컴퓨터를 이용하여 주어진 문제들을 해결하는 과정 속에서 자연스럽게 새로운 정보를 창출할 수 있고, 정보의 연관성을 표현할 수 있는 능력을 기르도록 하였다. 연구방법은 부산의 초등학교 5학년 23명을 대상으로 8개월간 적용하여, 적용 전후를 비교하는 실험연구를 중심으로 하였다. 연구 결과 '정보의 정선', '정보의 신뢰성 확보', '정보의 분류 분석 비교', '정보의 내면화' 등에서 주목할 만한 발전적인 변화가 있었다.
Al Ghamdi, Norah Mohammad;Khan, Muhammad Badruddin
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.111-118
/
2022
This research article presents the work that is related to the application of different machine learning based similarity techniques on religious text for identifying similarities and differences among its various translations. The dataset includes 10 different English translations of verses (Arabic: Ayah) of two Surahs (chapters) namely, Al-Humazah and An-Nasr. The quantitative similarity values for different translations for the same verse were calculated by using the cosine similarity and semantic similarity. The corpus went through two series of experiments: before pre-processing and after pre-processing. In order to determine the performance of machine learning based similarities, human annotated similarities between translations of two Surahs (chapters) namely Al-Humazah and An-Nasr were recorded to construct the ground truth. The average difference between the human annotated similarity and the cosine similarity for Surah (chapter) Al-Humazah was found to be 1.38 per verse (ayah) per pair of translation. After pre-processing, the average difference increased to 2.24. Moreover, the average difference between human annotated similarity and semantic similarity for Surah (chapter) Al-Humazah was found to be 0.09 per verse (Ayah) per pair of translation. After pre-processing, it increased to 0.78. For the Surah (chapter) An-Nasr, before preprocessing, the average difference between human annotated similarity and cosine similarity was found to be 1.93 per verse (Ayah), per pair of translation. And. After pre-processing, the average difference further increased to 2.47. The average difference between the human annotated similarity and the semantic similarity for Surah An-Nasr before preprocessing was found to be 0.93 and after pre-processing, it was reduced to 0.87 per verse (ayah) per pair of translation. The results showed that as expected, the semantic similarity was proven to be better measurement indicator for calculation of the word meaning.
본 논문에서는 wav2vec 2.0과 KcELECTRA 모델을 활용하여 멀티모달 학습을 통한 감정 분류 방법을 탐색한다. 음성 데이터와 텍스트 데이터를 함께 활용하는 멀티모달 학습이 음성만을 활용하는 방법에 비해 감정 분류 성능을 유의미하게 향상시킬 수 있음이 알려져 있다. 본 연구는 자연어 처리 분야에서 우수한 성능을 보인 BERT 및 BERT 파생 모델들을 비교 분석하여 텍스트 데이터의 효과적인 특징 추출을 위한 최적의 모델을 선정하여 텍스트 처리 모델로 활용한다. 그 결과 KcELECTRA 모델이 감정 분류 작업에서 뛰어난 성능이 보임을 확인하였다. 또한, AI-Hub에 공개되어 있는 데이터 세트를 활용한 실험을 통해 텍스트 데이터를 함께 활용하면 음성 데이터만 사용할 때보다 더 적은 양의 데이터로도 더 우수한 성능을 달성할 수 있음을 발견하였다. 실험을 통해 KcELECTRA 모델을 활용한 경우가 정확도 96.57%로 가장 우수한 성능을 보였다. 이는 멀티모달 학습이 감정 분류와 같은 복잡한 자연어 처리 작업에서 의미 있는 성능 개선을 제공할 수 있음을 보여준다.
International Journal of Advanced Culture Technology
/
제6권2호
/
pp.123-128
/
2018
Learning data is composed of 100 characters with 10 different fonts, and test data is composed of 10 characters with a new font that is not used for the learning data. In order to consider the variety of learning data with several different fonts, 10 learning masks are constructed by accumulating pixel values of same characters with 10 different fonts. This process eliminates minute difference of characters with different fonts. After finding maximum values of learning masks, test data is expanded by multiplying these maximum values to the test data. The algorithm calculates sum of differences of two corresponding pixel values of the expanded test data and the learning masks. The learning mask with the smallest value among these 10 calculated sums is selected as the result of the recognition process for the test data. The proposed algorithm can recognize various types of fonts, and the learning data can be modified easily by adding a new font. Also, the recognition process is easy to understand, and the algorithm makes satisfactory results for character recognition.
When interacting with unknown environments, an autonomous agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. The traditional multiple sequential learning model requires predefined probability of the states' transition. This paper proposes a multiple sequential learning and prediction system with definition of autonomous states to enhance the automatic performance of existing AI algorithms. In sequence learning process, the sensed states are classified into several group by a set of proposed motivation filters to reduce the learning computation. In prediction process, the learning agent makes a decision based on the estimation of each state's cost to get a high payoff from the given environment. The proposed learning and prediction algorithms heightens the automatic planning of the autonomous agent for interacting with the dynamic unknown environment. This model was tested in a virtual library.
Perceived game realism (PGR) has recently emerged as a key concept in explaining the mental processing of digital game playing and the societal impact of digital games. However, few studies have examined its conceptualization and educational effects from an empirical viewpoint, especially in educational games. This study's participants included 292 university students in South Korea. A total of 212 questionnaires were valid and used for the analyses. They learned English expressions using a computer-based educational game and then completed questionnaires on the research variables. We investigated six factors of PGR: simulational realism (SIR), freedom of choice (FRC), perceptual pervasiveness (PEP), social realism (SOR), authenticity (AUT), and character involvement (CAI). We expected the factors to have valid effects on the university students' flow and learning satisfaction after a game-based learning (GBL) experience. Our research results demonstrated a causal relationship between SIR, FRC, CAI, and learning satisfaction. Furthermore, the indirect effects of SIR and CAI on learning satisfaction through flow were statistically significant.
International Journal of Internet, Broadcasting and Communication
/
제14권2호
/
pp.192-198
/
2022
Companies are building and utilizing their own data analysis systems according to business characteristics in the distributed cloud. However, as businesses and data types become more complex and diverse, the demand for more efficient analytics has increased. In response to these demands, in this paper, we propose an unsupervised learning-based data analysis agent to which reinforcement learning is applied for effective data analysis. The proposal agent consists of reinforcement learning processing manager and unsupervised learning manager modules. These two modules configure an agent with k-means clustering on multiple nodes and then perform distributed training on multiple data sets. This enables data analysis in a relatively short time compared to conventional systems that perform analysis of large-scale data in one batch.
본 논문에서는 딥러닝을 PC에 적용하기 위한 메모리 최적화에 관한 알고리즘을 제안한다. 제안된 알고리즘은 일반 PC에서 기존의 딥러닝 구조에서 요구되는 연산처리 과정과 데이터 량을 감소시켜 메모리 및 연산처리 시간을 최소화한다. 본 논문에서 제안하는 알고리즘은 분별력이 있는 랜덤 필터를 이용한 컨볼루션 층 구성 과정, PCA를 이용한 데이터 축소 과정, SVM을 사용한 CNN 구조 생성 등의 3과정으로 이루어진다. 분별력이 있는 랜덤 필터를 이용한 컨볼루션 층 구성 과정에서는 학습과정이 필요치 않아서 전체적인 딥러닝의 학습시간을 단축시킨다. PCA를 이용한 데이터 축소 과정에서는 메모리량과 연산처리량을 감소시킨다. SVM을 사용한 CNN 구조 생성에서는 필요로 하는 메모리량과 연산 처리량의 감소 효과를 극대화 시킨다. 제안된 알고리즘의 성능을 평가하기 위하여 예일 대학교의 Extended Yale B 얼굴 데이터베이스를 사용하여 실험한 결과, 본 논문에서 제안하는 알고리즘이 기존의 CNN 알고리즘과 비교하여 비슷한 성능의 인식률을 보이면서 연산 소요시간과 메모리 점유율에 있어 우수함이 확인되었다. 본 논문에서 제안한 알고리즘을 바탕으로 하여 일반 PC에서도 많은 데이터와 연산처리를 가진 딥러닝 알고리즘을 구현할 수 있으리라 기대된다.
학습자의 정보처리유형에 따른 e-Book 인터페이스의 설계 및 개발은 학습자 중심의 적성처지교수를 위해 중요한 이슈가 된다. 이에 본 연구에서는 하이퍼텍스트 정보구조가 제공된 e-Book 학습환경에서 학습자의 정보처리유형이 학습내용 이해 및 사용 편의성에 있어 어떠한 차이를 보이는지를 검증해 봄으로써 보다 처방적인 e-Book 인터페이스의 설계전략에 대한 시사점을 제공하고자 하였다. 본 연구를 위해 대학생 68명이 참여하였으며, 하이퍼텍스트 정보구조가 제공된 e-Book 콘텐츠를 통해 학습한 후 정보처리유형(시각 정보처리, 언어 정보처리)에 따른 학업성취도 (텍스트 구조 파악 및 학습내용이해)와 사용 편의성에 대한 효과성을 검증하였다. 연구결과, 학업성취도에 있어서는 정보처리 유형에 따라 텍스트 구조 파악에는 유의미한 차이가 나타났으나, 학습내용 이해에는 유의미한 차이가 나타나지 않았다. 사용 편의성에 있어서는 학습자의 정보처리유형에 따라 유의미한 차이가 나타났으며, 구체적으로는 텍스트 구조 파악의 용이성, 텍스트 분량 파악의 용이성, 네비게이션의 용이성, 그리고 내용기억의 편의성 등에 있어 유의미한 차이가 나타났다. 또한 학업성취도에 영향을 미친 사용 편의성의 주요요인은 학습위치 파악의 용이성이었으며, 정보처리유형의 집단간 분류의 정확도는 79.4%로 비교적 높은 것으로 나타났다. 이러한 결과를 바탕으로 e-Book 콘텐츠 설계 및 개발에 대한 전략적 시사점에 논의 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.