• 제목/요약/키워드: Learning Processing

검색결과 3,681건 처리시간 0.027초

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

기능성에 따른 프로그래밍 소스코드 분류를 위한 Deep Learning Model 연구 (A Study on Deep Learning model for classifying programs by functionalities)

  • 윤주성;이은헌;안진현;김현철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.615-616
    • /
    • 2016
  • 최근 4차 산업으로 패러다임이 변화함에 따라 SW산업이 더욱 중요하게 되었다. 이에 따라 전 세계적으로 코딩 교육에 대한 수요도 증가하게 되었고 기업에서도 SW를 잘 만들기 위한 코드 관리 중요성도 증가하게 되었다. 많은 양의 프로그래밍 소스코드를 사람이 일일이 채점하고 관리하는 것은 사실상 불가능하기 때문에 이러한 문제를 해결할 수 있는 코드 평가 시스템이 요구되고 있다. 하지만 어떤 코드가 좋은 코드인지 코드를 어떻게 평가해야하는지에 대한 명확한 기준은 없으며 이에 대한 연구도 부족한 상황이다. 최근에 주목 받고 있는 Deep Learning 기술은 이미지 처리, 자연어 처리등 기존의 Machine Learning 알고리즘이 냈던 성과보다 훨씬 뛰어난 성과를 내고 있다. 하지만 Programming language 영역에서는 아직 깊이 연구된 바가 없다. 따라서 본 연구에서는 Deep Learning 기술로 알려진 Convolutional Neural Network의 변형된 형태엔 Tree-based Convolutional Neural Network를 사용하여 프로그래밍 소스코드를 분석, 분류하는 알고리즘 및 코드의 Representation Learning에 대한 연구를 진행함으로써 이러한 문제를 해결하고자 한다.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Selection of Machine Learning Techniques for Network Lifetime Parameters and Synchronization Issues in Wireless Networks

  • Srilakshmi, Nimmagadda;Sangaiah, Arun Kumar
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.833-852
    • /
    • 2019
  • In real time applications, due to their effective cost and small size, wireless networks play an important role in receiving particular data and transmitting it to a base station for analysis, a process that can be easily deployed. Due to various internal and external factors, networks can change dynamically, which impacts the localisation of nodes, delays, routing mechanisms, geographical coverage, cross-layer design, the quality of links, fault detection, and quality of service, among others. Conventional methods were programmed, for static networks which made it difficult for networks to respond dynamically. Here, machine learning strategies can be applied for dynamic networks effecting self-learning and developing tools to react quickly and efficiently, with less human intervention and reprogramming. In this paper, we present a wireless networks survey based on different machine learning algorithms and network lifetime parameters, and include the advantages and drawbacks of such a system. Furthermore, we present learning algorithms and techniques for congestion, synchronisation, energy harvesting, and for scheduling mobile sinks. Finally, we present a statistical evaluation of the survey, the motive for choosing specific techniques to deal with wireless network problems, and a brief discussion on the challenges inherent in this area of research.

Case-Related News Filtering via Topic-Enhanced Positive-Unlabeled Learning

  • Wang, Guanwen;Yu, Zhengtao;Xian, Yantuan;Zhang, Yu
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1057-1070
    • /
    • 2021
  • Case-related news filtering is crucial in legal text mining and divides news into case-related and case-unrelated categories. Because case-related news originates from various fields and has different writing styles, it is difficult to establish complete filtering rules or keywords for data collection. In addition, the labeled corpus for case-related news is sparse; therefore, to train a high-performance classification model, it is necessary to annotate the corpus. To address this challenge, we propose topic-enhanced positive-unlabeled learning, which selects positive and negative samples guided by topics. Specifically, a topic model based on a variational autoencoder (VAE) is trained to extract topics from unlabeled samples. By using these topics in the iterative process of positive-unlabeled (PU) learning, the accuracy of identifying case-related news can be improved. From the experimental results, it can be observed that the F1 value of our method on the test set is 1.8% higher than that of the PU learning baseline model. In addition, our method is more robust with low initial samples and high iterations, and compared with advanced PU learning baselines such as nnPU and I-PU, we obtain a 1.1% higher F1 value, which indicates that our method can effectively identify case-related news.

온라인 교육 환경에서 효율적 학습자 문제추천을 위한 스마트 컨트랙트 연구 (Smart contract research for efficient learner problem recommendation in online education environment)

  • 민연아
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.195-201
    • /
    • 2022
  • 학습자 주도의 지속적 원격교육 환경을 위하여 학습자의 정확한 학습 패턴을 고려한 올바른 문제 추천 가이드에 대한 필요성이 증대하고 있다. 본 논문에서는 원격교육환경에서 수집되는 학습자의 문제패턴에 대하여 상황별 가중치를 부여하여 해당 데이터를 기반의 개별 학습자의 최적 문제추천 경로를 제시하는 방법으로 블록체인 기반 스마트 컨트랙트 기술을 연구하였다. 본 연구의 성능평가를 위하여 기존 유사 학습 환경과의 학습만족도 및 문제추천가이드의 유용성과 학습자 데이터 처리속도를 분석하였으며 본 연구를 통하여 15% 이상 학습 만족도 향상과 기존 학습 환경 대비 20% 이상의 학습데이터 처리속도향상을 확인하였다.

학습기반 효율적인 얼굴 검출 시스템 설계 (Design of an efficient learning-based face detection system)

  • 김현식;김완태;박병준
    • 디지털산업정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.

A Study on Protecting Privacy of Machine Learning Models

  • Lee, Younghan;Han, Woorim;Cho, Yungi;Kim, Hyunjun;Paek, Yunheung
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.61-63
    • /
    • 2021
  • Machine learning model gained the popularity in recent years as multi-national companies have incorporated machine learning in their services. Such service is called machine learning as a service (MLaSS). Such services are provided to users based on charge-per-query which triggers the motivations for adversaries to steal the trained victim model to reduce the cost of using the service. Therefore, it is important for companies that provide MLaSS to protect their intellectual property (IP) against adversaries. It has been arms race between the attack and defence in a context of the privacy of machine learning models. In this paper, we provide a comprehensive study of recent development in protecting privacy of machine learning models.

Transfer Learning-Based Feature Fusion Model for Classification of Maneuver Weapon Systems

  • Jinyong Hwang;You-Rak Choi;Tae-Jin Park;Ji-Hoon Bae
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.673-687
    • /
    • 2023
  • Convolutional neural network-based deep learning technology is the most commonly used in image identification, but it requires large-scale data for training. Therefore, application in specific fields in which data acquisition is limited, such as in the military, may be challenging. In particular, the identification of ground weapon systems is a very important mission, and high identification accuracy is required. Accordingly, various studies have been conducted to achieve high performance using small-scale data. Among them, the ensemble method, which achieves excellent performance through the prediction average of the pre-trained models, is the most representative method; however, it requires considerable time and effort to find the optimal combination of ensemble models. In addition, there is a performance limitation in the prediction results obtained by using an ensemble method. Furthermore, it is difficult to obtain the ensemble effect using models with imbalanced classification accuracies. In this paper, we propose a transfer learning-based feature fusion technique for heterogeneous models that extracts and fuses features of pre-trained heterogeneous models and finally, fine-tunes hyperparameters of the fully connected layer to improve the classification accuracy. The experimental results of this study indicate that it is possible to overcome the limitations of the existing ensemble methods by improving the classification accuracy through feature fusion between heterogeneous models based on transfer learning.

Crop Leaf Disease Identification Using Deep Transfer Learning

  • Changjian Zhou;Yutong Zhang;Wenzhong Zhao
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.149-158
    • /
    • 2024
  • Traditional manual identification of crop leaf diseases is challenging. Owing to the limitations in manpower and resources, it is challenging to explore crop diseases on a large scale. The emergence of artificial intelligence technologies, particularly the extensive application of deep learning technologies, is expected to overcome these challenges and greatly improve the accuracy and efficiency of crop disease identification. Crop leaf disease identification models have been designed and trained using large-scale training data, enabling them to predict different categories of diseases from unlabeled crop leaves. However, these models, which possess strong feature representation capabilities, require substantial training data, and there is often a shortage of such datasets in practical farming scenarios. To address this issue and improve the feature learning abilities of models, this study proposes a deep transfer learning adaptation strategy. The novel proposed method aims to transfer the weights and parameters from pre-trained models in similar large-scale training datasets, such as ImageNet. ImageNet pre-trained weights are adopted and fine-tuned with the features of crop leaf diseases to improve prediction ability. In this study, we collected 16,060 crop leaf disease images, spanning 12 categories, for training. The experimental results demonstrate that an impressive accuracy of 98% is achieved using the proposed method on the transferred ResNet-50 model, thereby confirming the effectiveness of our transfer learning approach.