• Title/Summary/Keyword: Learning Patterns

Search Result 1,186, Processing Time 0.038 seconds

『Rivers of Joseon』 Analysis of the Disaster Management System During the Great Flood of the Eulchuk Year (조선시대와 현대의 재난관리계층 비교분석 : 『조선의 하천』 을축년 대홍수와 괴산댐 월류를 중심으로)

  • Kwon, Seol A;Na, Jong Il;Byun, Sung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.472-483
    • /
    • 2019
  • Why can't we be free from diverse crises threatening our lives in a high-tech future society? Disasters interrupt habitual and institutionalized patterns of behavior and bring about a kind of social shock to make people follow social and individual changes. An interesting fact revealed in the study finding is that the role of disaster management control tower was proper during the Great Flood ofthe Eulchuk Year(1925) and the unified disaster management system facilitated smooth cooperation with relevant authorities. Also, motivating disaster management organizations positively influenced organizational commitment. This implies that if we constantly ask to improve current institutions by introspecting and learning, based on historical records, we may be able to find insights for a safe society of the future.

Causal Inference Network of Genes Related with Bone Metastasis of Breast Cancer and Osteoblasts Using Causal Bayesian Networks

  • Park, Sung Bae;Chung, Chun Kee;Gonzalez, Efrain;Yoo, Changwon
    • Journal of Bone Metabolism
    • /
    • v.25 no.4
    • /
    • pp.251-266
    • /
    • 2018
  • Background: The causal networks among genes that are commonly expressed in osteoblasts and during bone metastasis (BM) of breast cancer (BC) are not well understood. Here, we developed a machine learning method to obtain a plausible causal network of genes that are commonly expressed during BM and in osteoblasts in BC. Methods: We selected BC genes that are commonly expressed during BM and in osteoblasts from the Gene Expression Omnibus database. Bayesian Network Inference with Java Objects (Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes were included as candidate genes in the implementation of Banjo. Next, we obtained the Bayesian structure and assessed the prediction rate for BM, conditional independence among nodes, and causality among nodes. Furthermore, we reported the maximum relative risks (RRs) of combined gene expression of the genes in the model. Results: We mechanistically identified 33 significantly related and plausibly involved genes in the development of BC BM. Further model evaluations showed that 16 genes were enough for a model to be statistically significant in terms of maximum likelihood of the causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs of combined gene expression patterns showed that the expression levels of UBIAD1, HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from BC. Conclusions: The CBN structure can be used as a reasonable inference network for accurately predicting BM in BC.

An International Comparison of Nets of Solids Presented in Elementary Mathematics Textbooks (초등학교 수학교과서에서 전개도 제시에 관한 국제 비교)

  • Seo, Hwajin;Lee, Kwangho
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.2
    • /
    • pp.199-220
    • /
    • 2018
  • This is a traditional education content that has been consistently handled in elementary school mathematics textbooks since the first curriculum in Korea. It has been mainly used to find out the properties of the solid figure or to save the surface area. However, as the importance of spatial ability is increasingly emphasized, the nets of solids can be a very suitable learning material for dealing with the spatial ability. Therefore, in this study, we examined how the nets of solids were taught in elementary school mathematics curriculum and textbooks in Korea, and based on the analysis, we analyzed the contents of the nets of solids covered in textbooks of Japan, Singapore, Finland and Hong Kong. Through this study, we suggested the enhancement of activities to find the right nets, the presentation of solid figure from various angles, and the nets of solids with patterns for improvement of spatial visualization and spatial orientation.

  • PDF

Effects of Teacher's Commnunicative Behaviors on Instructor and Class Evaluations: by Student Personalty Traits and Communication Characteristics (교수자 커뮤니케이션 행동의 차별적 효과에 대한 연구: 학습자의 성격요인과 커뮤니케이션 특성에 따른 집단간 차이)

  • Ahn, Horim
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.361-371
    • /
    • 2021
  • Communication education research has focused on the effects of instructor characteristics on learning. It is necessary to consider student characteristics as well to develop an effective teaching strategy. The current study tries to classify students into multiple distinct groups depending on their personality traits and communication characteristics and investigates differences in effects of teacher characteristics between those groups. A survey on unversity students was conducted to collect data. A cluster analysis was carried out to identify distint sub-groups of respondents by their personality traits and communication characteristics. The analysis yielded two distinct groups. The two groups were named stable-reticent group', and 'neurotic-talkative group' respectivley. Series of multiple regression were carried out in order to investigate differences in the effects of instructor characteristics. The analyses found different patterns of effects between the two sub-groups. The findings suggest that it is necessary to adopt different communication styles and teaching strategies depending on student types.

A Study on Self-medication for Health Promotion of the Silver Generation

  • Oh, Soonhwan;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.82-88
    • /
    • 2020
  • With the development of medical care in the 21st century and the rapid development of the 4th industry, electronic devices and household goods taking into account the physical and mental aging of the silver generation have been developed, and apps related to health and health are generally developed and operated. The apps currently used by the silver generation are a form that provides information on diseases by focusing on prevention rather than treatment, such as safety management apps for the elderly living alone and methods for preventing diseases. There are not many apps that provide information on foods that have a direct effect and nutrients in that food, and research on apps that can obtain information about individual foods is insufficient. In this paper, we propose an app that analyzes food factors and provides self-medication for health promotion of the silver generation. This app allows the silver generation to conveniently and easily obtain information such as nutrients, calories, and efficacy of food they need. In addition, this app collects/categorizes healthy food information through a textom solution-based crawling agent, and stores highly relevant words in a data resource. In addition, wide deep learning was applied to enable self-medication recommendations for food. When this technique is applied, the most appropriate healthy food is suggested to people with similar eating patterns and tastes in the same age group, and users can receive recommendations on customized healthy foods that they need before eating. This made it possible to obtain convenient healthy food information through a customized interface for the elderly through a smartphone.

Prediction Model for Unpaid Customers Using Big Data (빅 데이터 기반의 체납 수용가 예측 모델)

  • Jeong, Jaean;Lee, Kyouhwan;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.827-833
    • /
    • 2020
  • In this paper, to reduce the unpaid rate of local governments, the internal data elements affecting the arrears in Water-INFOS are searched through interviews with meter readers in certain local governments. Candidate data affecting arrears from national statistical data were derived. The influence of the independent variable on the dependent variable was sampled by examining the disorder of the dependent variable in the data set called information gain. We also evaluated the higher prediction rates of decision tree and logistic regression using n-fold cross-validation. The results confirmed that the decision tree can find more accurate customer payment patterns than logistic regression. In the process of developing an analysis algorithm model using machine learning, the optimal values of two environmental variables, the minimum number of data and the maximum purity, which directly affect the complexity and accuracy of the decision tree, are derived to improve the accuracy of the algorithm.

Implementation of a Classification System for Dog Behaviors using YOLI-based Object Detection and a Node.js Server (YOLO 기반 개체 검출과 Node.js 서버를 이용한 반려견 행동 분류 시스템 구현)

  • Jo, Yong-Hwa;Lee, Hyuek-Jae;Kim, Young-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This paper implements a method of extracting an object about a dog through real-time image analysis and classifying dog behaviors from the extracted images. The Darknet YOLO was used to detect dog objects, and the Teachable Machine provided by Google was used to classify behavior patterns from the extracted images. The trained Teachable Machine is saved in Google Drive and can be used by ml5.js implemented on a node.js server. By implementing an interactive web server using a socket.io module on the node.js server, the classified results are transmitted to the user's smart phone or PC in real time so that it can be checked anytime, anywhere.

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.

Brain Correlates of Emotion for XR Auditory Content (XR 음향 콘텐츠 활용을 위한 감성-뇌연결성 분석 연구)

  • Park, Sangin;Kim, Jonghwa;Park, Soon Yong;Mun, Sungchul
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.738-750
    • /
    • 2022
  • In this study, we reviewed and discussed whether auditory stimuli with short length can evoke emotion-related neurological responses. The findings implicate that if personalized sound tracks are provided to XR users based on machine learning or probability network models, user experiences in XR environment can be enhanced. We also investigated that the arousal-relaxed factor evoked by short auditory sound can make distinct patterns in functional connectivity characterized from background EEG signals. We found that coherence in the right hemisphere increases in sound-evoked arousal state, and vice versa in relaxed state. Our findings can be practically utilized in developing XR sound bio-feedback system which can provide preference sound to users for highly immersive XR experiences.

Analyzing the Trends of Culture Technology using National Research Projects (문화기술(CT) 연구 동향 분석: 국가연구과제를 중심으로)

  • Lee, Beom-Hun;Jeon, Woojin;Geum, Youngjung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.64-76
    • /
    • 2021
  • Culture technology (CT) becomes important in the recent environment where digital technology drives content-based innovations. However, technological trends of CT have not been systematically discussed. Especially, the trends of CT should be analyzed from the national perspective, because CT has grown with the help of government-driven innovation. Therefore, this paper aims to analyze CT trends focusing on national research projects. We collected data on CT from the national science and technology information service (NTIS) database, analyzed the keyword co-occurrence network, and identified the patterns of technological innovation using a clustering analysis. As a result, we found that CT has contributed to the digital content and cultural media, and has been actively developed with the help of machine learning technique. Especially, due to the rise of Covid-19, the non-face-to-face online content is rapidly increasing. This study provides important clues for understanding, analyzing CT trends.