Journal of the Korean Society of Systems Engineering
/
v.15
no.2
/
pp.72-78
/
2019
Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.
In real time applications, due to their effective cost and small size, wireless networks play an important role in receiving particular data and transmitting it to a base station for analysis, a process that can be easily deployed. Due to various internal and external factors, networks can change dynamically, which impacts the localisation of nodes, delays, routing mechanisms, geographical coverage, cross-layer design, the quality of links, fault detection, and quality of service, among others. Conventional methods were programmed, for static networks which made it difficult for networks to respond dynamically. Here, machine learning strategies can be applied for dynamic networks effecting self-learning and developing tools to react quickly and efficiently, with less human intervention and reprogramming. In this paper, we present a wireless networks survey based on different machine learning algorithms and network lifetime parameters, and include the advantages and drawbacks of such a system. Furthermore, we present learning algorithms and techniques for congestion, synchronisation, energy harvesting, and for scheduling mobile sinks. Finally, we present a statistical evaluation of the survey, the motive for choosing specific techniques to deal with wireless network problems, and a brief discussion on the challenges inherent in this area of research.
Yoo, Sang-yeop;Kim, Jae-won;Park, Hyeon-jun;Lee, Choong Ho
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.327-329
/
2019
In this paper, we propose an automatic attendance management system for classrooms using OpenCV and machine learning technology. When a face photograph is input at the entrance of the classroom using a general purpose camera for PC, the attendance is checked by comparing the similarity of the face of the already stored student. In this study, the prototype was implemented using the machine learning library dlib, and about 10% of the students had a recognition rate of about 70%.
Based on the capture-emission energy (CEE) maps of CMOS devices, a physics-informed machine learning model for the bias temperature instability (BTI)-induced threshold voltage shifts and low frequency noise is presented. In order to incorporate physics theories into the machine learning model, the integration of artificial neural network (IANN) is employed for the computation of the threshold voltage shifts and low frequency noise. The model combines the computational efficiency of IANN with the optimal estimation of Gaussian mixture model (GMM) with soft clustering. It enables full lifetime prediction of BTI under various stress and recovery conditions and provides accurate prediction of the dynamic behavior of the original measured data.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.4
/
pp.289-293
/
2002
Learning Classifier System (LCS) finds a new rule set using genetic algorithm (GA). In this paper, The Zeroth Level Classifier System (ZCS) is applied to evolving the strategy of a robot soccer simulation game (SimuroSot), which is a state varying dynamical system changed over time, as GBML (Genetic Based Machine Learning) and we show the effectiveness of the proposed scheme through the simulation of robot soccer.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.11a
/
pp.439-443
/
2007
Nowadays, activity recognition becomes a hot topic in context-aware computing. In activity recognition, machine learning techniques have been widely applied to learn the activity models from labeled activity samples. Most of the existing work uses only one learning method for activity learning and is focused on how to effectively utilize the labeled samples by refining the learning method. However, not much attention has been paid to the use of multiple classifiers for boosting the learning performance. In this paper, we use two methods to generate multiple classifiers. In the first method, the basic learning algorithms for each classifier are the same, while the training data is different (ASTD). In the second method, the basic learning algorithms for each classifier are different, while the training data is the same (ADTS). Experimental results indicate that ADTS can effectively improve activity recognition performance, while ASTD cannot achieve any improvement of the performance. We believe that the classifiers in ADTS are more diverse than those in ASTD.
The Transactions of the Korea Information Processing Society
/
v.4
no.9
/
pp.2299-2308
/
1997
While most machine learning research has been primarily concerned with the development of systems that implement one type of learning strategy, we use a multistrategy approach which integrates rule induction learning and instance-based learning, and show how this marriage allows for overall better performance. In the rule induction learning phase, we derive an entropy function, based on Hellinger divergence, which can measure the amount of information each inductive rule contains, and show how well the Hellinger divergence measures the importance of each rule. We also propose some heuristics to reduce the computational complexity by analyzing the characteristics of the Hellinger measure. In the instance-based learning phase, we improve the current instance-based learning method in a number of ways. The system has been implemented and tested on a number of well-known machine learning data sets. The performance of the system has been compared with that of other classification learning technique.
A self-diagnostic monitoring system is a system that has the ability to measure various physical quantities such as temperature, pressure, or acceleration from sensors scattered over a mechanical system such as a power plant, in order to monitor its various states, and to make a decision about its health status. We have developed a self-diagnostic monitoring system for an air-operated valve system to be used in a nuclear power plant. In this study, we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression, an artificial neural network, and a support vector machine. After each algorithm performs the decision process independently, the decision-making module collects these individual decisions and makes a final decision using a majority vote scheme. With this, we performed some simulations and presented some of its results. The contribution of this study is that, by employing more robust and stable algorithms, each of the algorithms performs the recognition task more accurately. Moreover, by integrating these results and employing the majority vote scheme, we can make a definite decision, which makes the self-diagnostic monitoring system more reliable.
Akbar, Waleed;Rivera, Javier J.D.;Ahmed, Khan T.;Muhammad, Afaq;Song, Wang-Cheol
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.8
/
pp.2801-2815
/
2022
With the advent and realization of Software Defined Network (SDN) architecture, many organizations are now shifting towards this paradigm. SDN brings more control, higher scalability, and serene elasticity. The SDN spontaneously changes the network configuration according to the dynamic network requirements inside the constrained environments. Therefore, a monitoring system that can monitor the physical and virtual entities is needed to operate this type of network technology with high efficiency and proficiency. In this manuscript, we propose a real-time monitoring system for data collection and visualization that includes the Prometheus, node exporter, and Grafana. A node exporter is configured on the physical devices to collect the physical and virtual entities resources utilization logs. A real-time Prometheus database is configured to collect and store the data from all the exporters. Furthermore, the Grafana is affixed with Prometheus to visualize the current network status and device provisioning. A monitoring system is deployed on the physical infrastructure of the KOREN topology. Data collected by the monitoring system is further pre-processed and restructured into a dataset. A monitoring system is further enhanced by including machine learning techniques applied on the formatted datasets to identify the elephant flows. Additionally, a Random Forest is trained on our generated labeled datasets, and the classification models' performance are verified using accuracy metrics.
Machine learning organizes knowledge for efficient and accurate reuse. This paper is concerned with methods of concept learning from examples, which glean knowledge from a training set of preclassified ‘objects’. Ideally, training facilitates classification of novel, previously unseen objects. However, every learning system relies on processing and representation assumptions that may be detrimental under certain circumstances. We explore the biases of a well-known learning system, ID3, review improvements, and introduce some improvements of our own, each designed to yield accurate and pedagogically sound classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.