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A Combined Method of Rule Induction Learning and
Instance-Based Learning
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ABSTRACT

While most machine learning research has been primarily concerncd with the development of systems that
implement one type of learning strategy, we use a multistrategy approach which integrates rule induction learn-
ing and instance-based learning, and show how this marriage allows for overall better performance.

In the rule induction learning phase, we derive an entropy function, based on Hellinger divergence, which can
measure the amount of information each inductive rule contains, and show how well the Hellinger divergence
measures the importance of cach rule. We also propose some heuristics to reduce the computational complexity
by analyzing the characteristics of the Hellinger measure. In the instance-based learning phase, we improve the
current instance-based learning method in a2 number of ways. The system has been implemented and tested on a
number of well-known machine learning data sets. The performance of the system has been compared with that
of other classification learning techniques.

1. Introduction between the different backgrounds among people.
Also, the knowledge obtained from humans is generally

It is well known that acquiring expertise from uncertain, inconsistent and sometimes even contra-
experts causes serious problems. It causes serious dictory. Therefore, automatically generating knowl-
bottlenecks due to the communications problem edge provides significant potential as the number of

available databases grow exponentially. For this pur-

t 4 3 9 EIYEE AAEA pose, most machine learning research has been pri-
EEHF 197 49 3, HAISE 1997 84 8 marily concerned with the development of systems
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that implement one type of inference within a single
computational paradigm. Such systems include those
for empirical induction of decision trees [15], rule
induction [9], instance-based learning [1], explanation-
based learning [6], neural-net learning [16], and gen-
etic algorithms [7]. These learning systems can be very
effective and useful, if the learning problems they are
applied to are narrowly defined. However, empirical
comparison of these different approaches in a variety
of application domains has shown that each performs
best in some, but not in others. Even though many
different approaches to inductive learning has been
used in the machine learning literature, each has
specific limitations that are hard to overcome. Many
real-world applications pose learning problem beyond
the capability of monostrategy learning methods. This
raises a crucial question to knowledge system devel-
oped : which method is the most suitable for a certain
domain?

Multistrategy learning is an attempt to tackle this
problem by integrating multiple methods in one
algorithm. Recent years have witnessed a growing
interest in developing multistrategy systems that inte-
grate two or more inference types and/or computa-
tional paradigms in one learning system. Among early
well-known multistrategy systems are PRODIGY
[10], OCCAM [12], and KBL [19]. Such multistrategy
systems take advantage of the complementary, infer-
ential representational mechanisms. Therefore, multis-
trategy systems have a potential to be more versatile
and more powerful than monostrategy systems.

While most of these systems are concerned with
integrating symbolic empirical induction with expla-
nation-based learning in order to utilize the domain
knowledge of explanation-based learning for empirical
induction [11] [13}, in this paper, we investigate the
integration of rule induction system with instance-
based learning, and show how this marriage shows
overall better performance. The central idea of
integrating rule induction with instance-based learning

is the following. The proposed system is composed of

two phases:rule induction learning phase and in-
stance-based learning phase. In the rule induction
learning phase, the proposed system generates a set of
inductive rules which are sorted based on their rule
strength. Apparently, all the rules generated from the
system cannot be a member of the final rule set
because most of the rules are very poor in their qual-
ity. Therefore, among the candidate rules gene-
rated from the rule induction learning phase, the sys-
tem only selects rules whose strength quality is higher
than a certain threshold value, and then the
instance-based learning phase takes over the control
and classifies the remaining instances which could not

be processed by the rule induction learning phase.

2 Rule Induction Learning Phase

In recent years many systems for generating induc-
tive rules from examples have been developed. The
current rule induction system includes PRISM |[3],
CN2 [4], and AQ family of rule induction systems [9].
Although these rule induction methods differ with
each other, the basic idea is to use the single-best-rule
method which expands only one rule at a time and
add one condition after another to the antecedent un-
til the rule is consistent with the negative data.

The rule induction phase of this paper is primarily
based on Smyth and Goodman’s ITRULE rule induc-
tion algorithm [18]. The ITRULE algorithm and the
rule induction method proposed in this paper have
some similarities in the sense that both adopt an
entropy function as the measure of the strongness of
rules. However, as discussed in the following section,
we point out some deficiencies of Kullback entropy
function used in ITRULE algorithm, and propose a
new improved entropy function, called Hellinger mea-
sure. The method is probabilistic because the signi-
ficance of each rule is measured by the Hellinger

measure.

2.1 Probabilistic Ruie Induction



The format of the rules the system will generate is

the following:

A=a, B=b,-—>T=t with s

where 4, B, and T are attributes with @, b, and ¢
being values in their respective discrete values. Each
rule is associated with a value(s) which represents the
significance of the rule. The right-hand expression is
restricted to be a single value assignment while the
left-hand side may be a conjunction of such expre-
ssions. The attribute appearing in the right-hand side
is usually called ‘target attribute.’

The basic idea of rule induction in the proposed
system starts with the fact that the value assignments
in the left hand side of each rule effects the prob-
ability distribution of the attribute of the right-hand
side. The target attribute forms its a priori
probabilities without presence of any conditions. It
normally represents the class frequencies of the target
attribute. However, its probability distribution changes
when it is measured under certain conditions given as
value assignments of other attributes. Intuitively
speaking, if a certain value assignment has signifi-
cantly changed the probability distribution of the tar-
get, it is clear that the given value assignment plays
an important role determining the class values of the
target attribute. On the other hand, if the probability
distribution of the target attribute remains the same
regardless of a value assignment of other attribute,
those two attributes are independent with each other.
Therefore, it is a natural definition, in this paper, that
the significance of a rule is interpreted as the degree
of dissimilarity between a priori probability distri-
bution and a posteriori probability distribution of the
target attribute.

Our next step is to define or select a proper
measure which can correctly measure the dissimilarity
(divergence) of these two probability distributions.
Many studies regarding dissimilarity measure were

conducted in the field of information theory. Among
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them, Kullback measure is one of the most widely
used measure. For example, Smyth and Goodman
(18] have developed the ITRULE algorithm using
modified form of Kullback entropy function as the
certainty factor of inductive rules. However, one of
the problems that the Kullback entropy function used
in the ITRULE algorithm is that as the function is
originally defined for continuous variables, it is not
applicable to all the cases of discrete probability
distributions. For instance, if one value of an attri-
bute takes the probability of unity, Kullback measure
is not able to be defined in this case unless the orig-
inal values are approximated. For more information
about other measures, readers are referred to the
work of Smyth and Goodman [18].

Throughout the classification learning system des-
cribed in this paper, we employ a new measure, called
Hellinger divergence, which was originally introduced
by Beran [2). Let #; denote the value of attribute 7.
Also suppose P(#;) denotes a priori probabilities of
attribute 7 and P (¢;|a) means a posteriori probabilities
under the condition 4 =a. The corresponding Hellinger

divergence, is defined as

[ (VP@)~~/P(tla) 22

It can be interpreted as a distance measure where dis-
tance corresponds to the amount of divergence
between a priori and a posteriori distribution. In
words, it is a measure of how dissimilar a priori and
a posteriori beliefs are about T-useful rules imply a
high degree of dissimilarity. Ii is definable in every
combination of a priori probabilities and a posteriori
probabilities.

Suppose there is a rule with the event 4 =a as the
right-hand side and B=5 as the left-hand side, as
shown in the following:

B=b—sA=a (1)

According to the definition of Hellinger measure, the
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significance is defined as follows.

[ X (VP(@~+/Plalb)?]'? @

Equation (2) adds up, for all value of @ in attribute
A, the difference of probability P(a) and P(alb).
However, in rule generation environment, only one
particular value of the class attribute appears in the
right hand side of the rule, and thus the probabilities
for the other values are accumulatively included in
1—P(a). In words, what is important in measuring
the accuracy of the rule is to check whether or not an
instance belongs to the class value of the right hand
side of the rule. Suppose the target attribute(say 4)
has % values(a,, @,,---,a;) and the rule has 4=a, as
the right hand side. The probability distribution of
attribute 4 is transformed into a binary probability
distribution form such as (P(4=a,;), P(4 #a)).
Therefore, the significance of the rule in formula (1)

is transformed as follows.

(VP@lb)— /P(@)*+ (\/1-P(alb)- \/1-P(@)?

where P(alb) means the conditional probability of 4
=a under the condition B=15.

Another problem we have to consider in rule induc-
tion is to decide how general a rule is. The basic idea
behind the generality is that the more often the
left-hand side occurs for a rule, the more useful the
rule becomes. For example, suppose there are two
cases of HIV positive patients in an imaginary hospi-
tal database, and the blood type of both patients.
turned out to be ‘A’. It is not a good idea for a rule

induction system to generate a rule such as
If patient = HIV-positive, then Blood-type =D

This type of rule overfits a specific condition and thus

lacks its generality. Therefore, in this paper, we use

VP ()

as a measure of generality of hypothesis. Conse-
quently, the H measure represents the significance of
rule as a multiplicative measure of the generality and
accuracy of a given rule. For a given rule in Equation
(1), the final form of its significance(H measure) is
defined in the following as the product term between
the generality and accuracy of the rule.

VP®) | \/Plalb)— /P(@)* +(~/1—-P(alb)
-(V/1-P@)]

3. Combining Instance-based Learning
with Rule Induction

We have described how the system generates an
initially large candidate set of rules that models the
data. Our next objective is to find a rule set which
can provide best classification results as it could. In
the proposed system, we will consider a greedy search
procedure for finding the best rule set. Unlike other
rule induction systems, the system keeps a table of the
most promising rules, which are sorted based on their
significance. At each stage, the best rule of the list is
added to the current rule set. If we simply add the
best rule from the list until all the instances are
covered by the rule set, which is similar to the
method used in the AQ style rule induction systems,
we¢ can maximize only the number of covered
instances and it is unlikely that the final rule set
produces good classification accuracy. Besides, the
final covering rule set often overfits the training data,
performing poorly on new cases. Therefore, a second
refinement step is needed to adjust the rule set to the
right complexity fit.

The basic idea of combining these two methods is
the following. Among the rules generated from the
rule induction learning phase, a certain number of
rules are selected for the final rule set, and the
instances that could not be classified based on this
rule set will be classified by the instance-based learn-



ing phase. Initially, the system begins with an empty
rule set. In this case, the entire instances will be classi-
fied only by the instance-based learning phase. After
that, the system adds the best element of the rule list
to the current rule set, and the test instances will be
classified by the rule induction learning phase first.
And then, the remaining instances, those could not be
classified by the rule induction learning phase, will be
classified by the instance-based learning phase. As
more rules are added, the performince of the rule set
increases since all the rules added at early stages are
to have high quality. However, after the size of the
rule set reaches a certain point, the overall perfo-
rmance decreases as the poor rules begin to be added.
If the classification accuracy of the new rule set is
worse than that of the previous rule set, the system
stops and the previous rule set becomes the final rule

set.
4 Instance-Based Learning Phase

After the rule induction learning phase produces
inductive rules and thus classifies the test data set, it
is the responsibility of instance-based learning to pro-
cess the test data which could not be classified by the
inductive rules. This section describes an information
theoretic  instance-based learning  technique.
Instance-based learning method is primarily based on
the traditional & nearest neighbor(2-NN) algorithm.
We have improved the 2-NN algorithm in some ways.
In the following section, we point out some problems
that current similarity measures contain and propose
a new improved method of measuring similarity
between instances in databases. We define similarity
measures for every possible attribute type in relational
database, and provide methods to calculate the
weights for both attributes and selected instances. The
similarity measure used in the proposed method is
designed to take into account all the knowledge

expressed in relational databases.
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4.1 New Similarity Measure

Now we will elucidate the detailed method of calcu-
lating similarity metrics. Suppose we compare the
similarity between two instance X and Y. Let x; and y
» fori=1,--« k, be the values of the i-th attribute for
X and Y, respectively. Let a; be a value of an attri-
bute 4 and T its target attribute. As we mentioned
earlier, the importance of each attribute depends on
the target attribute. Let D,(X, Y) denote the simi-
larity function between two instances X and Y with
respect to attribute T. D7 (X, Y) will be defined in the

following manner.
k
Dr(X, V) =) wr() - drix;, 3)
i=1

where wr(7) is the weight of attribute 4, with respect
to T, and dy(x; ;) denotes the similarity between
values x; and y;.

The computation of similarity between two instances
consists of two steps:calculating the weights of
attributes and calculating the value similarity between
two attribute values. Each step will be explained in

detail in the following sections.

4.2 Assigning Weights to Attributes

Information theory serves as the theoretic back-
ground in calculating both the weights of attributes
and the value similarities. The basic idea for calculating
the weight of each attribute is that the more infor-
mation an attribute gives to the target attribute, the
more weight the attribute is to have. Information the-
ory provides us with variety of tools which can
measure the amount of information each value
assignment gives to other attributes as a form of an
entropy function.

For one value assignment of the attribute, its corre-
sponding information content will be calculated using
entropy function. Therefore, for discrete attribute
types such as binary, categorical or pointer, we calcu-
late the information content for each separate discrete

value and their average value becomes the weight of
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the attribute.

One problem of this approach is that we can not
apply this method directly to numeric attributes
because the fundamental theory is based on discrete
entropy function. For numeric attributes, we discretize
the numeric values first, and then follow the same
procedure used for categorical attributes. We use the
context-sensitive discretization which is described in
[8]. This method is applied, as part of the prepro-
cessing procedure, to each of the numeric attributes.

Now the critical part is how to measure the amount
of information a value assignment gives to the target
attribute. We use the Hellinger divergence again as
the information measure. Suppose we are to estimate
the amount of information that a value assignment of
an attribute 4 gives to the target attribute 7, and let ¢
»i=1,--,k, and a;, j=1,-,{, denote the values of
T and A, respectively. Hellinger measure of the amount
of information 4= a; gives to attribute T, denoted as
Ent (T|A=a), is defined as

Ent(T1A=a)=[L (V/Pt) —/PUla)* ] (3)

Summation of formula (3) with respect to attribute 4
may serve as the weight of attribute 4. However, in
that case, the weight increases monotonically as the
number of category increases. Therefore, attributes
with a large number of category are to have larger
weights. As a way to normalize this value, formula (3)
is multiplied by the probability that each category can
happen, P(a;).

Ent(T|A)=Y. P(a) Ent(T| A=a))
7

By doing so, Ent(T|A) becomes independent of the
number of category. However, since this measure can
grow indefinitely, using Ent(T'| A) as the weight of an
attribute may provide anomalous similarity values. By
dividing the current Ent(T'] 4) value by the total sum-
mation of Ent(T'|A), we have the following formula
which ranges from zero to one.

Y P(@)Ent(T)4=a))

o (4) = Ent(T|A4) __?
T Y Ent(T|A4) S Ent(T|A)
A#T A#T

4.3 Computing Value Similarity

The second step for calculating instance similarity
is to compute the similarity between two attribute
values. As we mentioned earlier, the proposed similarity
measure is defined on every possible attribute type in
a database. In the following, a new method for calcu-
lating similarity between two values is defined for
each data type:binary, categorical, numeric, and
pointer.

For binary values, it is straightforward to decide
how similar two binary values are. We just check

whether they match with each other.

If x;= 35,
dr(x; y)=1
otherwise
dr(x;, 3)=0

Similarity measures for numeric values have been
de fined in a number of places before. As we
mentioned earlier, Euclidean or .absolute methods
have been widely used. In the proposed method, the
distance between values x; and y; is defined as the
ratio of absolute value of lx;—%;] to the total range
of A. Therefore, the similarity between these two
values is defined as
dr(x;, y=1 —M

R
where R denotes the range of attribute 4.

For categorical(nominal) values, the traditional
similarity measuring technique is to check whether
two values match or not. This measure produces poor
results. Suppose x; and y; are two values of an attri-
bute A4, and T denotes the target attribute. We first



measure the amount of information that x; or y; gives
about the target attribute. Their relative difference is
divided by the total amount of information that A
gives, and the result is subtracied from 1. Formally,

the similarity is given as

|Ent(TVA=x)—Ent(T|A=1y))]
Ent(T| 4)

drlx;, y)=1-

There has been no attempt to define the similarity
measure for pointer attribute type. A simple way to
measure the similarity for this case is to check
whether two values point to the same instance. As we
discussed earlier, in this case, we are to lose the infor-
mation embedded within the pointer values, which
results in poor similarity measure. A second possible
way is to regard pointer attribute as categorical attri-
bute. This causes the overfitting problem because, un-
like categorical values, pointer values have very few
corresponding instances for each of its value assign-
ment.

We adopt a more sophisticated way for the simi-
larity measure of pointer type. Because a value of
pointer type refers to another instance, the difference
between two pointer values can be regarded as the
difference between those two which are being referred

to. Thus we can decide their similarity by recursively
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applying the similarity function to the instances being
pointed to. The formal definition of similarity for
pointer value is defined in a recursive form as follows.
Suppose ;,) and ;,) represent the instances referenced
by x; and y; respectively.

If x; or y; does not exist in the database,

dr{x;, y)=0
otherwise
—> -
Dr(xi, ¥:), % # 3
dr{x;, ¥)= {
1, X=Y;

We have defined the similarity for each data type:
binary, numeric, categorical, and pointer. Similarity
value for each attribute is multiplied by its corre-
sponding weight and the resuits are added attribute
by attribute.

(Table 1) Characteristices of data sets

No. of No. of No. of
Data set class attribute instance
Breast cancer 2 10 699
Echocardiogram | 2 8 132
Thyroid 3 5 215

{Table 2) Rules from breast cancer data

Rule H
4.5 < SHAPE < 10, 55 < BN < 10— Class = Malignant 0.2749
1.0 < SECS < 2.5 LOKBN<X 1.5, 1.0 < MT < 1.5-> Class = Benign 0.2741
1.0 <SECS < 2.5, 1.0< BN < 1.5 Class = Benign 0.274}
1.0<SIZE< 2.5 1.0<BN<15 10<NN<25—> Elass = Benign 0.2737
5.5 < BN < 10— Class = Malignant o 0.2737
6.5 < CT < 10, 4.5 < SHAPE < 10, 5.5 < BN < 10~ Class = Malignant 0.2687
LiS < CT < 10, 4.5 < SHAPE < 10— Class = Malignant 0.2685
10<MA<15 1.0<SECS<25, 1.0KNN<2S5, 1.0<M <1.5->Class = Benign | 0.2640
1.0 <MA< 1.5 1.0<BN< LS5, L.O<N < 2.5 Class = Benign 0.2584
4.5 < SHAPE < 10— Class = Malignant 0.2583
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The system assigns different weights, the similarity
value defined as above, to each instance selected from
the system. It is obvious that the more similar an
instance is, the larger the weight is. For each instance
selected by instance-based learning, their values are
accumulated based on the class categories, and the
class category with the largest collected weight value
will be selected as the final class value.

5. Evaluation

The classification results are analyzed and compared
with other methods. The experiments consist of
databases obtained from the University of California
Irvine machine learning database repository. To evaluate
the performance of the system, three data sets were
considered : breast cancer, echocardiogram, and thyroid
database. In this section, we describe the chara-
cteristics of these databases and explain the performance
of the system against these databases. Two data sets,
breast-cancer and echocardiogram, contain a number
of missing values. Table \ref{data-set} summarizes
the characteristics of these data sets. Every database
contains numeric attributes, which have been discretized
in advance. Throughout the entire experiments in this
section, each numerical attribute will be discretized
into seven intervals in advance. Too small a number
of intervals for discretization degrades the performance
and too large a number of intervals increases the
complexity of the learning process. Based on our
empirical experiments, seven intervals provided us
with reasonable accuracy without sacrificing com-
plexity.

Breast Cancer Dataset: This dataset is to predict
whether or not breast cancer would recur during five
year period. This dataset was provided and tested by
Wolberg [20]. Wolberg applied his multisurface
method of pattern separation to this data set. Table 2
shows the top 10 rules generated from the rule induc-
tion phase of the proposed system. Figure 1 shows
that the proposed system produces better perfo-



rmance during the number of rules is between 30 and
70.

Echocardiogram Dataset: This dataset represents
a set of people who had recently suffered acute heart
attack. The dataset includes several measures taken
from echocardiograms, which are ultrasound meas-
urements of the heart itself. The test result is
compared with EACH algorithm developed by
Salzberg [17], and Figure 2 summarizes the results.
The proposed system shows the better results in most
cases except the number of rules is 10.

Thyroid Dataset: The objective of this dataset is
to predict whether a patient’s thyroid belongs to the

class euthyroidism, hypothyroidism, or hyperthyro-
idism. Figure 3 shows the summary of the test results.
The test result is compared with that of Coomans’s
algorithm [5] and his method showed better regardless

of the number of rules.

6. Conclusion

The results presented in this paper demonstrate
that hybrid algorithms combining rule induction
learning and instance-based learning can be tractable,
that resulting rules can capture complex interrela-
tionships among attributes in a variety of domains,
and that these combined method can thus classify
new cases with high accuracy. The system displayed
robustness in the face of both noise and incomplete
data. Comparison with other classification techniques
were quite favorable, and in some domains, the
program performed better than any results published
before.

The principal goal of performing this work is to
allow users to use available databases to understand
and predict more accurately the outcomes of future
examples of the database. The results presented in
this paper suggest that the system constitutes signifi-
cant progress toward achieving this goal and
generates classification rules that classify subsequent

cases with high accuracy. The work in this paper
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indicates that information theoretic multistrategy
methods can be applied to this problem, and that
resulting rules may be wsed for classifying new cases,
or providing insight into the interrelationships among
variables in that domain. The results we presented in
this paper demonstrates that the application of infor-
mation theoretic multistrategy method is promising,
however, much work remains to be done.

The proposed system seems to have wide area of
applications as we have seen in Section 5. The only
requirement the users have to consider before running
the system is that the databases must be represented
in the form of relational database tables. Besides, the
system does not allow the values of attributes form a

hierarchical structure.
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