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Abstract 

 
With the advent and realization of Software Defined Network (SDN) architecture, many 
organizations are now shifting towards this paradigm. SDN brings more control, higher 
scalability, and serene elasticity. The SDN spontaneously changes the network configuration 
according to the dynamic network requirements inside the constrained environments. 
Therefore, a monitoring system that can monitor the physical and virtual entities is needed to 
operate this type of network technology with high efficiency and proficiency. In this 
manuscript, we propose a real-time monitoring system for data collection and visualization 
that includes the Prometheus, node exporter, and Grafana. A node exporter is configured on 
the physical devices to collect the physical and virtual entities resources utilization logs. A 
real-time Prometheus database is configured to collect and store the data from all the exporters. 
Furthermore, the Grafana is affixed with Prometheus to visualize the current network status 
and device provisioning. A monitoring system is deployed on the physical infrastructure of the 
KOREN topology. Data collected by the monitoring system is further pre-processed and 
restructured into a dataset. A monitoring system is further enhanced by including machine 
learning techniques applied on the formatted datasets to identify the elephant flows. 
Additionally, a Random Forest is trained on our generated labeled datasets, and the 
classification models’ performance are verified using accuracy metrics. 
 
 
Keywords: Software Defined Network (SDN), Real-time monitoring, KOREN, NetFlow, 
Machine learning, Elephant flows. 



2802                                                             Waleed et al.:  A Machine Learning-based Real-time Monitoring System for 
  Classification of Elephant Flows on KOREN 

1. Introduction 

The rapid growth of computer networks has a high impact on traffic velocity, volume, and 
variety. The SDN decouples the traditional network device into two segments, the data plane 
for forwarding and the control plane for management and control [1]. The data plane is 
distributed on each virtual switch, and the central control plane is placed on the controller. The 
SDN provides many advantages over the traditional network, such as scalability, elasticity, 
and policy handling [31]. In SDN networks, the virtual switches are directly instructed by the 
controller. The flow tables are dynamically updated according to the network requirements. A 
controller is a central entity that manages all the flows in the network. The ONOS (Open 
Network Operating System) is the most widely used controller [3]. Commonly, the OpenFlow 
protocol is used to deploy flow rules on the switches by the controller [2]. An OpenFlow is 
the most widely used southbound protocol for communication between the control plane and 
data plane. 

Fig. 1 depicts the basic SDN architecture consisting of three layers: application layer, control 
layer, and infrastructure layer. An application layer provides the abstraction for services and 
applications from the underlying physical architecture. Northbound APIs are provided to 
communicate with the control layer. The intelligent central controller is the brain of SDN 
architecture, and it provides the services such as security policies, resources optimization 
policies, bandwidth management policies, and routing policies. The controller communicates 
with the underlying infrastructure through southbound APIs. Usually, OpenFlow is the major 
protocol used as southbound APIs. In SDN, Virtual Infrastructure Manager (VIM) manages 
and maintains a physical infrastructure. Logically, the controller extracts the information about 
physical resources via a VIM and provides this information to services on the application layer 
for further analysis. 

 

Fig. 1. Basic SDN Architecture consisting of application, control, and infrastructure layer. Whereas 
the southbound and northbound APIs is the way of communication between the layers.  
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One of the vital features in SDN is fine-grain monitoring. It assists the network to realize the 
behavior of underlying infrastructure and view the condition of network elements. With 
optimization of monitoring architecture, the network performance is highly improved. 
Therefore, to provide such lower-level monitoring detail about the virtual and physical entities, 
an efficient and scalable monitoring system is needed. A monitoring system should have 
capabilities to record network traffic and capture resource utilization. Network monitoring is 
classified into four steps. The first step is data collection from all the entities in the network. 
The second step is to do data processing in real-time to capture all the network dynamics. The 
popular tools for data processing and collection are the Prometheus server and Apache Kafka. 
The third step is data storage; a time-series database is used for data storage such as Influx DB, 
Prometheus DB, and Mongo DB. The fourth step is data visualization to view network 
behavior and resource utilization. The most popular tools for visualization are Grafana or 
Kibana. 
 
One aspect of the monitoring system is to visualize the whole network, and the other aspect is 
to analyze the accumulated data. The network engineer utilizes the former method to keep an 
eye on the whole network and detect ambiguous activity such as high resource utilization, high 
request count on a single server, and low resource availability. A threshold-based notification 
is available to identify these ambiguous activities in the network. Mostly, the latter is use case 
constrained such as traffic classification, link utilization, path optimization, and many more. 
In this era, the more focus of researchers is on data analysis and data engineering. That means 
interpreting the data and predicting the future state of data. Many machine learning and deep 
learning models are implemented in this study. Such studies include traffic classification [34], 
encrypted traffic analysis [33], and malicious traffic detection [32]. 
 
Traffic classification has a significant impact on network performance. Unable to detect the 
malicious traffic on time will hamper the normal flow of the network, and in worse situations, 
it crashes the whole network. The large flows usually consume the high network resources, 
and their presence affects the minor flows on the network. In network terms, such flows are 
called elephant flows. The elephant flow has a high impact on the network performance 
because it tends to consume high bandwidth for a long duration [29]. There is a high 
probability of congestion in-network when an elephant flow occurs. These days, data 
generation is too fast, and network changes are happening at a higher frequency. If the elephant 
flow is not detected on time, it may crash or hamper the normal working of the network, and 
it will continue to impact the working of the entire system slowly. Therefore, the importance 
of flows classification and identification is increasing rapidly. Many researchers [23], [27] 
have already proposed a monitoring system in SDN. They are either deployed in test-bed 
environments [25], [26] or in simulation environments [21], [22], [24]. These implementations 
cannot completely reflect the real behavior of a network. Most of the assumptions mentioned 
in these implementations are not realistic, and real networks should not have such a type of 
constraint and conditions. Therefore, the deployment of monitoring systems in a real 
environment is foremost important. 
 
To fulfill the SDN network requirements and provide the fine-grain monitoring capabilities, 
we proposed a real-time monitoring system to visualize and collect the real-time data of the 
KOREN infrastructure [4]. Later, we pre-process the collected data to construct a dataset. 
Further, we train the un-supervised classification models and evaluate the model performance 
using supervised learning models. Major modules of our proposed architecture are as follows. 
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The first module is a real-time network collection and visualization system. It consists of five 
major components Grafana [5], Prometheus [6], node exporter [7], push gateway [8], and a 
NetFlow collector [9]. The node exporter and NetFlow expose the API (Application 
programming interfaces) endpoints to connect and collect the metrics from physical and virtual 
entities. Prometheus is configured to pull the information from the node exporter endpoint. 
Similarly, Prometheus push-gateway is configured to push the metrics from the NetFlow 
collector. Then, the Grafana is used to visualize the information that helps the admin 
understand the network's state. After the data collection, we pre-process the data to understand 
the insights. Data cleaning, standardization, and feature selection are performed in the pre-
processing step. Furthermore, we label the dataset using unsupervised machine learning 
models and verify models' classification accuracy using Random Forest. Fig. 2 shows the steps 
performed in our proposed methodology for data analysis. 
 

 

Fig. 2.  The steps performed in our methodology for data analysis: How data is analyzed and pre-
process to make an un-label dataset. Later, dataset labeled using un-supervised models and evaluate 

using supervised model 
 

The manuscript division is as follows: the next section discusses the real-time monitoring 
system deployment and data collection module. Section three explains the data pre-processing 
and then describes the comprehensive detail of machine learning models, and this section ends 
with an explanation of the supervised learning model. Results and discussion are presented in 
section four, and the last section concludes the paper. 
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2. Real-time Monitoring System 
We have developed a real-time monitoring system on KOREN (Korea Education Research 
Network). which is an SDN system consisting of multiple spines and leaf switches, the 
KOREN test-bed topology is shown in Fig. 3.  

2.1 Proposed Monitoring System 
Fig. 3 depicts our integrated monitoring system with the complete KOREN topology that 
consists of six spines and ten leaf switches. A blue dotted line presents the interconnection 
between spine-to-spine and spine-to-leaf switches. Multiple paths between the switches 
provide redundancy in case of path or device failure. The NetFlow agent is installed in 
switches to monitor the real-time traffic. To restrict the NetFlow agent's scope and secure 
public network traffic, the agent's output is provided through the KOREN API. API's output 
is directly pushed into the Prometheus push-gateway that is configured to collect the 
information from the short-term jobs running in the network. Later, push-gateway stores the 
data in Prometheus DB. Moreover, we deployed the node exporter agents on end hosts to 
monitor the physical and virtual entities inside the host. A node exporter extracts the metrics 
such as interface network traffic, CPU (Central Processing Unit) utilization, memory 
utilization, etc. [10]. Prometheus directly pulls the data from node exporter agents and stores 
the data in DB. Grafana queries the Prometheus data and visualizes the response according to 
the use case scenarios. 
 
We design the Grafana dashboard to visualize network status and resource utilization, as 
shown in Fig. 4. The first block shows the lists of switches and hosts for selection. Host block 
represents the host's resource and network information. Host information includes processes 
utilization and memory utilization, and network information includes packets-in, packets-out, 
and packets per protocol. Moreover, it depicts virtual interface information. A switch block 
displays the selected switches link information such as packet-in, packet-out, in-drop, and out-
drop.  

Fig. 3. Real-Time Monitoring Architecture, consisting of Agents, KOREN API, Prometheus 
Gateway, Prometheus DB and Grafana Dashboard 
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Fig. 4. Grafana Dashboard: with dropdown list of host and switch, the host resource utilization 
information such as memory and CPU, and switches traffic information such bytes and packets count. 

2.1 System Configuration 
The core of the monitoring system is Prometheus DB, and it stores entire information in real-
time. First, Prometheus is installed, and the endpoint is configured to receive the metrics from 
the node exporter connected to the host device. The node exporter extracts the host machine's 
resource utilization and network-related metrics. NetFlow is configured on switches to monitor 
link network traffic. For security purposes of a public network, direct access is limited to admin 
only. Therefore, the KOREN provides HTTP (Hypertext Transfer Protocol) APIs to access the 
NetFlow output. A Grafana is configured to visualize the information available in DB. Table 
1 shows the port of running services for Grafana, Prometheus, Prometheus push-gateway, 
node-exporter, and NetFlow collector. 
 

Table 1. Port numbers of services 

S. No. Name URLs 

1 Grafana localhost:3000 

2 Prometheus localhost:9090 

3 Node Exporter <node_ip>:9100 

4 Push Gateway localhost:9091 

5 netFlow Collector <server_ip>:6343 
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3. Machine Learning for Traffic Classification 
Many research trends are moving towards the machine learning architecture model because of 
its high performance in other research fields [30]. Our proposed approach is also built on the 
machine learning architecture. In this manuscript, the following unsupervised learning 
techniques are analyzed to detect elephant flows. The K-Means [11], Gaussian distribution 
[12], DB-Scan [13], Spectral clustering [14], and HDB-Scan [15] are implemented. Before 
that, in the pre-processing step, feature selection methods are used to identify the key feature 
in the dataset. 

Table 2. List of all the metrics collected from the monitoring system 

3.1 Data Pre-Processing 
The raw data is analyzed in the pre-processing step to extract the key features. Table 2 shows 
the list of entire features. All columns with Nan, Null, None, or single value are removed in 
the data cleaning step. A “Kendell” [16] correlation matrix is applied to identify the essential 
features as a feature selection technique.  Scores near one are highly co-related and negative 
co-relation on the other side.  The features with values near -1 are dropped from the dataset 
since they negatively influence the model training process. Therefore, we calculated the 
“Kendell” correlation matrix again to show the strong correlation between the final selected 
features, as shown in Fig. 5. The remaining features are bytes transferred, a destination address, 
destination port, packet transferred, source port, and the protocol used. The impact of elephant 

S. No. Metric Name S. No. Metric Name 
1 Time stamp 8 Host 
2 Protocol name 9 Protocol id 
3 Bytes transferred 10 Packets transferred 
4 Destination address 11 Source address 
5 Destination port number 12 Source port number 
6 Destination port name 13 Source port name 
7 Flow records 14 Sequence number 

Fig. 5. Correlation matrix score of finalized features, close to one is best score and close to zero is 
worse score 
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flow is based on the number of bytes transferred on the network, and it is important to 
understand the relationship of bytes value with other features. Therefore, we applied a PCA 
(Principal Component Analysis) on the remaining features except for the bytes column [17]. 
After that, the dataset is re-scaled between 1 to 10 using the sci-kit learn Min-Max Scalar 
method [18]. Fig. 6 visualizes the relationship of bytes with all other features. 

Fig. 6. Visualization of PCA score of all other features against the total number of bytes transferred 

3.2 Unsupervised machine learning models 
Once the pre-processing step is completed, all non-relevant features have been removed, and 
the dataset is normalized and standardized. At this time, the dataset is prepared for machine 
learning model training. Ensemble learning is a technique to combine the output of multiple 
models and select the best possible answer. An ensemble of unsupervised clustering 
algorithms is evaluated on the prepared dataset; this section describes the learning models. 

 
Fig. 7. K-Means clustering labels are visualized here, small purple circles show the normal data, and 

yellow are classified as elephant flows.   

3.2.1 K-Means  
K-means is a popular clustering algorithm that divides the dataset into k number of non-
overlapping clusters. Overall, the algorithm's operating speed is fast, but learning usually falls 
in local minima. We select k=2 because our data has two visible sets. Initially, centroids are 
randomly placed and updated after each iteration. Every data point will belong to one of these 
clusters. The allocation of clusters is based on the lowest distance of a point from the centroid. 
The sum of squared distance between the data point and cluster centroid is calculated [35]. 
The mathematical representation for the calculation of centroid is shown in (1). Fig. 7 shows 
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the k-means clusters. 

�min
𝜇𝜇𝑗𝑗∈𝐶𝐶

(‖𝑥𝑥𝑖𝑖 −𝜇𝜇𝑗𝑗�
2)

𝑛𝑛

𝑖𝑖=0

… (1) 

3.2.2 Gaussian Mixture Models (GMM) 
GMM is a popular and powerful probabilistic clustering technique. It creates the n number of 
Gaussian distributions, and each distribution represents a single cluster. It performs the 
expectation step to calculate the expectations of likelihood based on the hyperparameter 
current estimates. Then, the maximization step computes the maximum probability found in 
the previous step. The point allocated to a cluster is based on the likelihood of data point mean 
and variance value. The assignment of mean and variance values to data points is based on the 
expectation-maximization (EM) technique [20]. The mathematical representation of the 
expectation and maximization steps is shown by (2) and (3), respectively. 

𝑄𝑄�𝜃𝜃�𝜃𝜃(𝑡𝑡)� =  𝐸𝐸
�𝑍𝑍�𝑋𝑋, 𝜃𝜃(𝑡𝑡)�

[log𝐿𝐿(𝜃𝜃;𝑋𝑋,𝑍𝑍)] … (2) 

𝜃𝜃(𝑡𝑡+1) = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝜃𝜃

𝑄𝑄�𝜃𝜃�𝜃𝜃(𝑡𝑡)�… (3) 
 
The GMM is applied to label the dataset and then plot to visualize the model predictions. 
GMM creates two clusters, but they overlap, as seen in Fig. 8.  

 
Fig. 8. GMM clustering labels are visualized here, small purple circles show the normal data, and 

yellow are classified as elephant flows. 

3.2.3 Density-based Clustering Algorithm (DBSCAN) 
DBSCAN (Density-based spatial clustering of applications with noise) is another data 
clustering algorithm for classifying data into two or more classes. In DBSCAN, there is no 
need to specify the number of clusters. It creates clusters based on the density of the points. It 
takes a minimum number of points in the region to be called a cluster and a minimum measured 
distance of neighborhood points. This algorithm divides all the data points into core, border, 
and noise points. The combination of core and data points makes the cluster, and noise points 
are the outliners. Fig. 9 depicts the DBSCAN clusters.  
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Fig. 9. DB-SCAN clustering labels are visualized and, it labels the data as single cluster 

3.2.4 Spectral Clustering 
It is a widely used clustering algorithm technique based on connected graph format used for 
non-convex data points. It inputs no information about the shape and size of the cluster. The 
data point cluster allocation is based on the eigenvalues and eigenvectors. It also performs the 
dimension reduction on eigenvalues and eigenvectors before clustering. Fig. 10 portrays the 
spectral-based clusters.  
 

 
Fig. 10. Spectral clustering clustering labels are visualized here, small yellow circles show the normal 

data, and purple are classified as elephant flows. 

3.2.5 Hierarchal DBSCAN 
It is the enhanced version of DBSCAN that takes the core points and distance of data points 
from the core points. Then it calculates the readability distance between all the points. Further,  
it creates the spanning tree with minimum reachability distance and converts it into a 
connected points hierarchy. Later, it will sort the points and condense the complex tree into 
smaller trees. A cluster is chosen based on persistent and lifelong tree features, and stability is 
calculated. The cluster with the higher stability is selected. Fig. 11 shows the HDBSCAN 
clusters. 
Each of these models is trained on the pre-processed dataset. The model predicts the number 
of clusters and the number of data points in each cluster, and then those points are labeled 
against the cluster they lie in. After the prediction the datasets are labeled with those cluster 
numbers. Hence five datasets are generated with different cluster labels. 
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Fig. 11. Spectral clustering labels are visualized here, small yellow circles show the normal data, and 

purple and green are classified as elephant flows. 

3.3 Model Configuration 
The configuration setting of hyper-parameters for un-supervised models is mentioned in the 
Table 3. Only values that provided the best results are listed in table. 
 

Table 3. Model configurations hyper-parameters with their selected values 
S. No. Model Hyper-parameters Values 

1 K-Means 
Number of clusters 2 
Maximum iterations 1000 
Algorithm ‘Elkan’ 

2 GMM Number of components 2 

3 DB-SCAN ‘eps’ 5 
Minimum samples 10 

4 Spectral Clustering Number of clusters 2 
Assign labels ‘k-means’ 

5 HDB-SCAN 
Cluster selection epsilon 5 
Minimum samples 1000 
Minimum cluster size 1000 

3.4 Supervised Learning 
A labeled dataset is created by assigning a cluster-id to each of the data points using multiple 
un-supervised learning models. All models predicted cluster labels based on provided input 
features. The labeled dataset consists of bytes transferred, PCA representation of other features 
and class label. There is no way to verify the accuracy of un-supervised machine learning 
models. Therefore, a supervised learning model is used to identify the efficiency of trained 
models. In our methodology, a random forest as a supervised learning model is selected. A 
detailed discussion of random forest is provided in the next section. 

3.4.1 Random Forest 
The random forest is a decision tree-based architecture [19]. It is an ensemble learning model 
that combines the outcomes of multiple classifiers to solve complex problems. Each classifier 
is a single tree decision tree, and they combine to make a forest. It is referred to as multiple 
forests consisting of multiple trees connected randomly. In such types of models, slight change 
in data will have a high impact on trees correlation. Less correlation means less chance of error 



2812                                                             Waleed et al.:  A Machine Learning-based Real-time Monitoring System for 
  Classification of Elephant Flows on KOREN 

during model training. The popular result aggregation techniques are bagging that is designed 
to increase the stability and accuracy of learning model. It also reduces the variance and 
overfitting of models. The decisive factors are entropy and information gain. We train the 
random forest model on each of our five labeled datasets. Random forest model inputs are 
features vectors with the y-labels and hyperparameters. In our case, y-labels are the cluster ids, 
and features are PCA representations of the other five features. The number of trees, minimum 
samples for split, minimum samples for the leaf node, maximum depth of tree are the 
hyperparameter we tune. We apply the gird search CV on random forest hyperparameters; the 
best values with tuning range are shown in Table 4[28]. 

 
Table 4. Random Forest hyperparameter name, range, and best values 

S. No. Metric Name Best Value Range 
1 N_estimators 500 100, 200, … ,1000 
2 Min_sample_split 20 10, 20, … ,100 
3 Min_samples_leaf 10 10, 20, … ,100 
4 Max_depth 25 5, 10, … ,50 
5 Bootstramp False False, True 

4. Results and Discussion 
Our tested is built on KOREN virtualized infrastructure, there are ten virtual switches with 
NetFlow enabled services. NetFlow information is send and store to central location. Similarly, 
there are ten hosts directly connected with switches. Furthermore, there are hosts agents to 
collect the information from end devices. Both hosts information and network traffic are stored 
in Prometheus DB. Prometheus is configured on our lab-PC. After that we configure Grafana 
environment in another PC. Once both services and running, the Grafana can query 
Prometheus for metrics and visual them on dashboard.   
We trained five instances of random forest algorithms on five labeled datasets. A dataset is 
evenly distributed, an 80% of data is utilized for training, and the remaining 20% is for testing, 
to assess the performance of individual models. We considered the k-means dataset as a 
reference dataset and evaluated all algorithms on the k-means test set. The accuracy is our 
primary evaluation metric, as shown in Fig. 12. The higher accuracy values mean our model 
accurately classifies the large flows. The DBSCAN would not achieve higher accuracy.  

 
Fig. 12. Accuracy achieved by the different datasets 
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Comparatively, the GMM method performs well. However, HDBSCAN and Spectral are the 
best-performed models after the k-means. These results show that the models do not overfit. 

5. Conclusion 
In this paper, we have implemented a real-time monitoring system to monitor the status of 
network and collect the network utilization data. Furthermore, we deployed a Grafana based 
visualization system to understand the current network entities with their status and behavior. 
The intrinsic benefits of having a real-time monitoring system can be perceived by coupling it 
with data analysis and machine learning techniques. This manuscript proposed an ensemble 
learning model for elephant flows classification, and accuracy score approaches that were 
utilized to select the best classification models. The readiness of network data for computing 
the algorithms allowed multiple model applications to represent results that could be compared. 
The system is flexible enough, to allow further enhancements for network optimization with 
the use of more complex algorithms. 
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