• 제목/요약/키워드: Learning Machine System

검색결과 1,830건 처리시간 0.03초

Performance Comparison of Machine Learning Algorithms for Received Signal Strength-Based Indoor LOS/NLOS Classification of LTE Signals

  • Lee, Halim;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.361-368
    • /
    • 2022
  • An indoor navigation system that utilizes long-term evolution (LTE) signals has the benefit of no additional infrastructure installation expenses and low base station database management costs. Among the LTE signal measurements, received signal strength (RSS) is particularly appealing because it can be easily obtained with mobile devices. Propagation channel models can be used to estimate the position of mobile devices with RSS. However, conventional channel models have a shortcoming in that they do not discriminate between line-of-sight (LOS) and non-line-of-sight (NLOS) conditions of the received signal. Accordingly, a previous study has suggested separated LOS and NLOS channel models. However, a method for determining LOS and NLOS conditions was not devised. In this study, a machine learning-based LOS/NLOS classification method using RSS measurements is developed. We suggest several machine-learning features and evaluate various machine-learning algorithms. As an indoor experimental result, up to 87.5% classification accuracy was achieved with an ensemble algorithm. Furthermore, the range estimation accuracy with an average error of 13.54 m was demonstrated, which is a 25.3% improvement over the conventional channel model.

A Study on the Application of Measurement Data Using Machine Learning Regression Models

  • Yun-Seok Seo;Young-Gon Kim
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.47-55
    • /
    • 2023
  • The automotive industry is undergoing a paradigm shift due to the convergence of IT and rapid digital transformation. Various components, including embedded structures and systems with complex architectures that incorporate IC semiconductors, are being integrated and modularized. As a result, there has been a significant increase in vehicle defects, raising expectations for the quality of automotive parts. As more and more data is being accumulated, there is an active effort to go beyond traditional reliability analysis methods and apply machine learning models based on the accumulated big data. However, there are still not many cases where machine learning is used in product development to identify factors of defects in performance and durability of products and incorporate feedback into the design to improve product quality. In this paper, we applied a prediction algorithm to the defects of automotive door devices equipped with automatic responsive sensors, which are commonly installed in recent electric and hydrogen vehicles. To do so, we selected test items, built a measurement emulation system for data acquisition, and conducted comparative evaluations by applying different machine learning algorithms to the measured data. The results in terms of R2 score were as follows: Ordinary multiple regression 0.96, Ridge regression 0.95, Lasso regression 0.89, Elastic regression 0.91.

Automated Phase Identification in Shingle Installation Operation Using Machine Learning

  • Dutta, Amrita;Breloff, Scott P.;Dai, Fei;Sinsel, Erik W.;Warren, Christopher M.;Wu, John Z.
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.728-735
    • /
    • 2022
  • Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at different phases of a sloped shingle installation task. As different phases are associated with different risk levels, this study explored the application of machine learning for automated classification of seven phases in a shingle installation task using knee kinematics and roof slope information. An optical motion capture system was used to collect knee kinematics data from nine subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features were used in building a phase classification model. They were three knee joint rotation angles (i.e., flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle installation phases from workers knee joint rotation and roof slope information. This knowledge, with further investigation, may facilitate knee MSD risk identification among roofers and intervention development.

  • PDF

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

Stroke Disease Identification System by using Machine Learning Algorithm

  • K.Veena Kumari ;K. Siva Kumar ;M.Sreelatha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.183-189
    • /
    • 2023
  • A stroke is a medical disease where a blood vessel in the brain ruptures, causes damage to the brain. If the flow of blood and different nutrients to the brain is intermittent, symptoms may occur. Stroke is other reason for loss of life and widespread disorder. The prevalence of stroke is high in growing countries, with ischemic stroke being the high usual category. Many of the forewarning signs of stroke can be recognized the seriousness of a stroke can be reduced. Most of the earlier stroke detections and prediction models uses image examination tools like CT (Computed Tomography) scan or MRI (Magnetic Resonance Imaging) which are costly and difficult to use for actual-time recognition. Machine learning (ML) is a part of artificial intelligence (AI) that makes software applications to gain the exact accuracy to predict the end results not having to be directly involved to get the work done. In recent times ML algorithms have gained lot of attention due to their accurate results in medical fields. Hence in this work, Stroke disease identification system by using Machine Learning algorithm is presented. The ML algorithm used in this work is Artificial Neural Network (ANN). The result analysis of presented ML algorithm is compared with different ML algorithms. The performance of the presented approach is compared to find the better algorithm for stroke identification.

연속학습을 활용한 경량 온-디바이스 AI 기반 실시간 기계 결함 진단 시스템 설계 및 구현 (Design and Implementation of a Lightweight On-Device AI-Based Real-time Fault Diagnosis System using Continual Learning)

  • 김영준;김태완;김수현;이성재;김태현
    • 대한임베디드공학회논문지
    • /
    • 제19권3호
    • /
    • pp.151-158
    • /
    • 2024
  • Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.

기계학습 알고리즘 기반의 인공지능 장기 게임 개발 (Development of Artificial Intelligence Janggi Game based on Machine Learning Algorithm)

  • 장명규;김영호;민동엽;박기현;이승수;우종우
    • 한국IT서비스학회지
    • /
    • 제16권4호
    • /
    • pp.137-148
    • /
    • 2017
  • Researches on the Artificial Intelligence has been explosively activated in various fields since the advent of AlphaGo. Particularly, researchers on the application of multi-layer neural network such as deep learning, and various machine learning algorithms are being focused actively. In this paper, we described a development of an artificial intelligence Janggi game based on reinforcement learning algorithm and MCTS (Monte Carlo Tree Search) algorithm with accumulated game data. The previous artificial intelligence games are mostly developed based on mini-max algorithm, which depends only on the results of the tree search algorithms. They cannot use of the real data from the games experts, nor cannot enhance the performance by learning. In this paper, we suggest our approach to overcome those limitations as follows. First, we collects Janggi expert's game data, which can reflect abundant real game results. Second, we create a graph structure by using the game data, which can remove redundant movement. And third, we apply the reinforcement learning algorithm and MCTS algorithm to select the best next move. In addition, the learned graph is stored by object serialization method to provide continuity of the game. The experiment of this study is done with two different types as follows. First, our system is confronted with other AI based system that is currently being served on the internet. Second, our system confronted with some Janggi experts who have winning records of more than 50%. Experimental results show that the rate of our system is significantly higher.

이중 기계학습 구조를 이용한 안구이동추적 기술개발 (Development of Eye-Tracking System Using Dual Machine Learning Structure)

  • 강경우;민철홍;김태선
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1111-1116
    • /
    • 2017
  • In this paper, we developed bio-signal based eye tracking system using electrooculogram (EOG) and electromyogram (EMG) which measured simultaneously from same electrodes. In this system, eye gazing position can be estimated using EOG signal and we can use EMG signal at the same time for additional command control interface. For EOG signal processing, PLA algorithms are applied to reduce processing complexity but still it can guarantee less than 0.2 seconds of reaction delay time. Also, we developed dual machine learning structure and it showed robust and enhanced tracking performances. Compare to conventional EOG based eye tracking system, developed system requires relatively light hardware system specification with only two skin contact electrodes on both sides of temples and it has advantages on application to mobile equipments or wearable devices. Developed system can provide a different UX for consumers and especially it would be helpful to disabled persons with application to orthotics for those of quadriplegia or communication tools for those of intellectual disabilities.

머신러닝 기반 유클리드 거리를 이용한 붓꽃 품종 분류 재구성 (A Reconstruction of Classification for Iris Species Using Euclidean Distance Based on a Machine Learning)

  • 남수태;신성윤;진찬용
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.225-230
    • /
    • 2020
  • 기계학습은 데이터를 기반으로 한 컴퓨터를 학습시켜 컴퓨터 스스로 데이터의 경향성을 파악하게 하여 새로운 입력 데이터의 출력을 예측하도록 하는 알고리즘이다. 기계학습은 크게 지도학습, 비지도학습, 강화학습으로 나눌 수 있다. 지도학습은 데이터에 대한 레이블이 주어진 상태로 기계를 학습시키는 방법이다. 즉, 데이터 및 레이블의 쌍을 통해 해당 시스템의 함수를 추론하는 방법으로 새로운 입력 데이터에 대해서 추론한 함수를 이용하여 결과를 예측한다. 그리고 예측하는 결과 값이 연속 값이면 회귀분석, 예측하는 결과 값이 이산 값이면 분류로 사용된다. 새로운 붓꽃 데이터 Sepal length(5.01)과 Sepal width(3.43)을 이용하여 기초 데이터와 유클리드 거리를 분석하였다. 분석결과, 테이블 3의 8번(5, 3.4, setosa), 27번(5, 3.4, setosa), 41번(5, 3.5, setosa), 44번(5, 3.5, setosa) 그리고 40번(5.1, 3.4, setosa)의 데이터 순으로 유사도가 높은 붓꽃으로 분류되었다. 따라서 이론적 실무적 시사점을 제시하였다.

크라우드센싱 시스템에서 머신러닝을 이용한 이상데이터 탐지 (Anomaly Data Detection Using Machine Learning in Crowdsensing System)

  • 김미희;이기훈
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.475-485
    • /
    • 2020
  • 최근, 별도의 센서를 설치하지 않고 센서가 포함된 사용자의 기기로부터 제공되는 실시간 센싱 데이터를 가지고 새로운 센싱 서비스를 제공하는 크라우드센싱(Crowdsensing) 시스템이 주목받고 있다. 크라우드센싱 시스템에서는 사용자의 조작실수나 통신 문제로 인해 의미 없는 데이터가 제공되거나 보상을 얻기 위해 거짓 데이터를 제공할 수 있어 해당 이상 데이터의 탐지 및 제거가 크라우드센싱 서비스의 질을 결정짓는다. 이러한 이상데이터를 탐지하기 위해 제안되었던 방법들은 크라우드센싱의 빠른 변화 환경에 효율적이지 않다. 본 논문은 머신러닝 기술을 활용하여 지속적이고 빠르게 변화하는 센싱 데이터의 특징을 추출하고 적절한 알고리즘을 통해 모델링하여 이상데이터를 탐지하는 방법을 제안한다. 지도학습의 딥러닝 이진 분류 모델과 비지도학습의 오토인코더 모델을 사용하여 제안 시스템의 성능 및 실현 가능성을 보인다.