• Title/Summary/Keyword: Learning Functions

Search Result 1,197, Processing Time 0.029 seconds

Comparative analysis of activation functions within reinforcement learning for autonomous vehicles merging onto highways

  • Dongcheul Lee;Janise McNair
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Deep reinforcement learning (RL) significantly influences autonomous vehicle development by optimizing decision-making and adaptation to complex driving environments through simulation-based training. In deep RL, an activation function is used, and various activation functions have been proposed, but their performance varies greatly depending on the application environment. Therefore, finding the optimal activation function according to the environment is important for effective learning. In this paper, we analyzed nine commonly used activation functions for RL to compare and evaluate which activation function is most effective when using deep RL for autonomous vehicles to learn highway merging. To do this, we built a performance evaluation environment and compared the average reward of each activation function. The results showed that the highest reward was achieved using Mish, and the lowest using SELU. The difference in reward between the two activation functions was 10.3%.

Design of a robot learning controller using associative mapping memory (연관사상 메모리를 이용한 로봇 머니퓰레이터의 학습제어기 설계)

  • 정재욱;국태용;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.936-939
    • /
    • 1996
  • In this paper, two specially designed associative mapping memories, called Associative Mapping Elements(AME) and Multiple-Digit Overlapping AME(MDO-AME), are presented for learning of nonlinear functions including kinematics and dynamics of robot manipulators. The proposed associative mapping memories consist of associative mapping rules(AMR) and weight update rules(WUR) which guarantee generalization and specialization of input-output relationship of learned nonlinear functions. Two simulation results, one for supervised learning and the other for unsupervised learning, are given to demonstrate the effectiveness of the proposed associative mapping memories.

  • PDF

Variation of activation functions for accelerating the learning speed of the multilayer neural network (다층 구조 신경회로망의 학습 속도 향상을 위한 활성화 함수의 변화)

  • Lee, Byung-Do;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • In this raper, an enhanced learning method is proposed for improving the learning speed of the error back propagation learning algorithm. In order to cope with the premature saturation phenomenon at the initial learning stage, a variation scheme of active functions is introduced by using higher order functions, which does not need much increase of computation load. It naturally changes the learning rate of inter-connection weights to a large value as the derivative of sigmoid function abnormally decrease to a small value during the learning epoch. Also, we suggest the hybrid learning method incorporated the proposed method with the momentum training algorithm. Computer simulation results show that the proposed learning algorithm outperforms the conventional methods such as momentum and delta-bar-delta algorithms.

  • PDF

ON THE STRUCTURE AND LEARNING OF NEURAL-NETWORK-BASED FUZZY LOGIC CONTROL SYSTEMS

  • C.T. Lin;Lee, C.S. George
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.993-996
    • /
    • 1993
  • This paper addresses the structure and its associated learning algorithms of a feedforward multi-layered connectionist network, which has distributed learning abilities, for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed neural-network-based fuzzy logic control system (NN-FLCS) can be contrasted with the traditional fuzzy logic control system in their network structure and learning ability. An on-line supervised structure/parameter learning algorithm dynamic learning algorithm can find proper fuzzy logic rules, membership functions, and the size of output fuzzy partitions simultaneously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Control System (RNN-FLCS) is proposed which consists of two closely integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCS) for solving various reinforcement learning problems in fuzzy logic systems. One NN-FLC functions as a fuzzy predictor and the other as a fuzzy controller. As ociated with the proposed RNN-FLCS is the reinforcement structure/parameter learning algorithm which dynamically determines the proper network size, connections, and parameters of the RNN-FLCS through an external reinforcement signal. Furthermore, learning can proceed even in the period without any external reinforcement feedback.

  • PDF

Using Classification function to integrate Discriminant Analysis, Logistic Regression and Backpropagation Neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.417-426
    • /
    • 2000
  • This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.

  • PDF

WWW Based Instruction Systems for English Learning: GAIA

  • Park, Phan-Woo
    • Journal of The Korean Association of Information Education
    • /
    • v.3 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • I studied a distance education model for English learning on the Internet. Basic WWW files, that contain courseware, are constructed with HTML, and functions, which are required in learning, are implemented with Java. Students and educators can access the preferred unit composed of the appropriate text, voice and image data by using a WWW browser at any time. The education system supports the automatic generation facility of English problems to practice reading and writing by making good use of the courseware data or various English text resources located on the Internet. Our system has functions to manage and control the flow of distance learning and to offer interaction between students and the system in a distributed environment. Educators can manage students' learning and can immediately be aware of who is attending and who is quitting the lesson in virtual space. Also, students and educators in different places can communicate and discuss a topic through the server. I implemented these functions, which are required in a client/server environment of distance education, with the use of Java. The URL for this system is "http://park.taegu-e.ac.kr" in the name of GAIA.

  • PDF

Study on the Development of a Model for Teaching and Learning Mathematics Using Graphic Calculators (그래픽 계산기를 활용하는 수학과 교수-학습 자료 모형 개발 연구)

  • 강옥기
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.453-474
    • /
    • 1998
  • This study is focused on the possibility if we can use graphic calculators in teaching and learning school mathematics. This study is consisted with four main chapters. In chapter II, the functions of the graphic calculator EL-9600 produced by Sharp Corporation was analyzed focused on the possibilities if the functions could be used in teaching and learning school mathematics. Calculating of real numbers and complex numbers, solving equations and system of linear equations, calculating of matrices, graphing of several functions including polynomial functions, trigonometric functions, exponential and logarithmic functions, calculation of differential and integrals, arranging of statical data, graphing of statistical data, testing of statistical hypotheses, and other more useful functions were founded. In Chapter III, a mathematics textbook developed by Core-Plus Mathematics Project was analyzed focused on how a graphic calculator was used in teaching and learning mathematics, In the textbook, graphic calculator was used as a tool in understanding mathematical concepts and solving problems. Graphic calculator is not just a tool to do complex computations but a tool used in the processes of doing mathematics, In chapter IV, the 7th mathematics curriculum for korean secondary schools was analyzed to find the contents could be taught by using graphic calculators. Most of the domains, except geometric figure, were found that they could be taught by using graphic calculators, In chapter V, a model of a unit using graphic calculator in teaching 7th mathematics curriculum was developed. In this model, graphic calculator was used as a tool in the processes of understanding mathematical concepts and solving problems. This study suggests the possibilities that we can use graphic calculators effectively in teaching and learning mathematical concepts and problem solving for most domains of secondary school mathematics.

  • PDF

A Comparative Analysis of Reinforcement Learning Activation Functions for Parking of Autonomous Vehicles (자율주행 자동차의 주차를 위한 강화학습 활성화 함수 비교 분석)

  • Lee, Dongcheul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.75-81
    • /
    • 2022
  • Autonomous vehicles, which can dramatically solve the lack of parking spaces, are making great progress through deep reinforcement learning. Activation functions are used for deep reinforcement learning, and various activation functions have been proposed, but their performance deviations were large depending on the application environment. Therefore, finding the optimal activation function depending on the environment is important for effective learning. This paper analyzes 12 functions mainly used in reinforcement learning to compare and evaluate which activation function is most effective when autonomous vehicles use deep reinforcement learning to learn parking. To this end, a performance evaluation environment was established, and the average reward of each activation function was compared with the success rate, episode length, and vehicle speed. As a result, the highest reward was the case of using GELU, and the ELU was the lowest. The reward difference between the two activation functions was 35.2%.

Beta and Alpha Regularizers of Mish Activation Functions for Machine Learning Applications in Deep Neural Networks

  • Mathayo, Peter Beatus;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.136-141
    • /
    • 2022
  • A very complex task in deep learning such as image classification must be solved with the help of neural networks and activation functions. The backpropagation algorithm advances backward from the output layer towards the input layer, the gradients often get smaller and smaller and approach zero which eventually leaves the weights of the initial or lower layers nearly unchanged, as a result, the gradient descent never converges to the optimum. We propose a two-factor non-saturating activation functions known as Bea-Mish for machine learning applications in deep neural networks. Our method uses two factors, beta (𝛽) and alpha (𝛼), to normalize the area below the boundary in the Mish activation function and we regard these elements as Bea. Bea-Mish provide a clear understanding of the behaviors and conditions governing this regularization term can lead to a more principled approach for constructing better performing activation functions. We evaluate Bea-Mish results against Mish and Swish activation functions in various models and data sets. Empirical results show that our approach (Bea-Mish) outperforms native Mish using SqueezeNet backbone with an average precision (AP50val) of 2.51% in CIFAR-10 and top-1accuracy in ResNet-50 on ImageNet-1k. shows an improvement of 1.20%.

A Study on Design of K-12 e-Learning System for Utilization Smartphone (스마트폰 활용을 위한 초.중등 교육용 이러닝 시스템 설계에 관한 연구)

  • Kim, Yong;Shon, Jin-Gon
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.135-143
    • /
    • 2011
  • The smartphone allows learners to be involved in learning environments in which students actively study from anywhere and at anytime. Because learners can keep engaged in the environment where they can access to the internet, they can efficiently study in transit using various features and functions of smartphone. Smart learning is a unique learning based on mobility and functions of mobile digital devices including searching and sharing information and using various applications. For the effective use of smartphones in e-learning systems, the contents and learning management systems should be designed to meet effective teaching and learning principles, such as interactivity and collaborations. In smart learning, learning contents for effective learning need to be integrated with typical functions of smartphones and to develop small pieces of learning contents according to learning topics. In the case of learning management systems, it should reflect understanding of learners' environment using a PA agent program and provide personalized learning services.