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Abstract

A very complex task in deep learning such as image classification must be solved with the help of neural 

networks and activation functions. The backpropagation algorithm advances backward from the output layer 

towards the input layer, the gradients often get smaller and smaller and approach zero which eventually leaves 

the weights of the initial or lower layers nearly unchanged, as a result, the gradient descent never converges to 

the optimum. We propose a two-factor non-saturating activation functions known as Bea-Mish for machine 

learning applications in deep neural networks. Our method uses two factors, beta (β) and alpha (α), to normalize 

the area below the boundary in the Mish activation function and we regard these elements as Bea. Bea-Mish 

provide a clear understanding of the behaviors and conditions governing this regularization term can lead to a 

more principled approach for constructing better performing activation functions. We evaluate Bea-Mish results 

against Mish and Swish activation functions in various models and data sets. Empirical results show that our 

approach (Bea-Mish) outperforms native Mish using SqueezeNet backbone with an average precision (AP50val) 

of 2.51% in CIFAR-10 and top-1accuracy in ResNet-50 on ImageNet-1k. shows an improvement of 1.20%.
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1. Introduction

In general, neural network and activation functions are the most important components of deep learning, 

mainly used to design large-scale neural networks or to determine the accuracy and performance efficiency of 

deep learning models that can be partitioned. An activation function defines an input or output of a set of inputs, 

that, the node of the node output given to the input. They basically decide to disable or activate neurons to get 

the desired output. It also performs non-linear transformations on the input to get better results in complex 

neural networks. The choice of activation function is essential to understanding the performance of deep neural 

networks in machine learning applications.

The activation such as sigmoid was extensively used in early literature [1]. The sigmoid function can accept 

any value, but always computes a value between 0 and 1. Tanh activation function modified the range of 
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computation values of sigmoid to -1 up to +1, however at the end it did not work perfect for deep neural 

networks to resolve vanishing gradients. Rectified Linear Unit (ReLU) showed better generalization and 

improved convergence speed compared to Sigmoid and tanh [2,3]. Various alternatives to ReLU have been 

proposed, these include LReLU, ReLU, ELU and SELU [4-7]. However, none of these variants has managed 

to replace ReLU due to inconsistent gains.

Figure 1 shows the process of applying an activation function in a layer of a neural network.

Figure 1. The process of applying an activation function in a layer of a neural network can be mathematically 

realized as � = �(�) = �(∑ ���� + ��
� ) where y is the output of the activation function a(z)

Recently, a set of non-monotonic activation functions, such as the Gaussian Error Linear Unit (GELU)[8] 

use Φ(x), known as the standard Gaussian cumulative distribution function. The Google brain team proposed 

an activation function called Swish that was discovered in a nonlinear function space by Neural Architecture 

Search (NAS) which use a controlled search agent [9,10]. HardSwish is a kind of activation function based on 

Swish, but it replaces the computationally expensive sigmoid with a piecewise linear analog [11]. Rectified 

Exponential Unit (REU) and Mish have been proposed with similar mathematical formulas and show robust 

and improved results in various models and data sets [12,13]. The main difference between monotonic and 

non-monotonic activation functions is their non-monotonic properties in the negative quadrant. ReLU is 

described by equation (1), which is not constrained on the positive axis of the input and sparse on the negative 

part [2].

�(�) = �
� �� � > 0
0 �� � ≤ 0

�                      (1)

From equation (1) � is the input and �(�) is the output (the activation value), ReLU uses identification 

mapping in the positive quadrant and output 0 in the negative part, identification mapping can alleviate the 

problem of disappearing gradients. GELU nonlinearity weights inputs by their value, rather than gates inputs 

by their sign as in ReLUs (� > 0) [8].

Mish, a novel self-regularized non-monotonic activation function inspired by the self-gating property of 

Swish. Mish is mathematically defined as:�(�) = � ∙ ���ℎ(��������(�)) [13]. However, self-regulation did 
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not solve gradient convergence as an optimal problem in deep neural networks.

2. Theory

In this work, we propose to Bea-Mish a two-factor regularized non-monotonic activation function for 

machine learning applications in deep neural networks to solve gradient descent converges to the optimum 

challenge. Our method uses two factors, beta (β) and alpha (α), to regularize the region below the boundary in 

the Mish activation function. In this method, together these factors are called Bea regularizer. Bea-Mish uses 

a common Mish mathematical expression, but we introduce additional definitions:

��������(�) = ln(1 + ��)�ℎ��� � = �

��

�����
, �(�) = � ∙ ���ℎ�ln�1 + �

��

�����
��  (2)

First derivative of the equation (3) is described by the equation (6) below.
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The value of α is determined by the value of β using the ratio α:β=1:5, and the value of β ranges from 1 to 

200. Bea-Mish avoids saturation, which typically slows down training quickly due to near-zero gradients [14].

3. Experiment Settings

We compared Bea-Mish results against Mish and Swish activation functions in various models and data sets. 

Our results show especially in computer vision tasks such as image classification, Bea-Mish consistently 

exceeded the highest performing networks. Multiple runs were used to observe the statistical significance of 

the results. In this section we analyze the statistical results and the ablation study of � and �.

4. Results and Discussion

4.1 CIFAR-10 Dataset on Various Baseline Activation Functions

Bea-Mish activation function compared to baseline activation functions, we compared the mean test 

accuracy, mean test loss, and standard deviation of test accuracy for CIFAR-10 image classification task using 

SqueezeNet following the parameter settings in [13, 15, 16]. Table 1 shows that Bea-Mish outperforms the 

other activation functions with the highest mean accuracy (μ acc), the second lowest mean loss(μ loss), and 

the third lowest accuracy standard deviation (σ acc). 

Table 1. Statistical results of various activation functions for image classification of the

CIFAR10 data set using SqueezeNet for 23 rounds and 50 epochs for β= 80 and α= 16

Activation Function μacc μloss σacc

Bea-Mish (Ours) 90.97% 4.05% 0.33

Mish[13] 87.48% 4.13% 0.40

Swish[9] 82.32% 4.22% 0.41
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4.2 CIFAR-10 Dataset on Various Standard Neural Network Architectures

We compare the performance of various criterion activation functions for image classification tasks in the 

CIFAR-10 dataset using different standard neural network architectures [17]. We alternated the activation 

function and keep all other network parameters and training parameter constant. We evaluate the performance 

of Bea-Mish compared to Mish and Swish using empirical results such as in native Mish for various standard 

network architectures [9,13]. Table 2 shows that Bea-Mish activation consistently outperforms Mish, and 

Swish activation in all standard architectures used in the experiments, providing performance gains up to 1% 

compared to native Mish network architectures.

Table 2. Comparison between Bea-Mish, Mish and Swish activation functions based on test 

accuracy on image classification of CIFAR-10 across various network architectures

Architecture Bea-Mish(ours) Mish Swish

ResNet-20 92.69% 92.02% 91.61%

WRN-10-2 86.97% 86.83% 86.83%

SimpleNet 92.31% 91.70% 91.44%

Xception Net 88.94% 88.73% 88.56%

4.3 ImageNet-1k Dataset on Various Standard Neural Network Architectures

We evaluate the performance of Bea-Mish against native Mish and Swish for ImageNet-2012 dataset 

classification task. ImageNet is considered one of the most challenging and important classification tasks in 

the domain of computer vision [18]. ImageNet consists of 1.28 million training images spread across 1,000 

classes. To evaluate the performance of the trained network, we use a validation set of 50,000 images. We set 

the batch size, mini-batch size, initial learning rate, momentum, and weight decay to 128, 32, 0.01, 0.9, and 

5e-4 respectively with total number of 6 million training steps. Table 3 results are more consistent with Bea-

Mish and generally guaranteed performance improvement in all neural network architecture for ImageNet 

classification.

Table 3. Comparison of Bea-Mish, Mish and Swish activation functions for image 

classification on ImageNet-1k datasets on various standard architectures

Model Augmentation
Bea-Mish(ours) Mish Swish

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-18[15] No 72.40%  90.47% 71.20%    89.90%    71.20%    90.10%

ResNet-50[15] No 76.84%  93.01% 76.10%    92.80%    75.90%    92.80%

SpineNet-49[19] Yes 73.62%  91.02% 71.40%    90.40%    71.50%    90.70%

CSP-ResNet-50[20] Yes 78.45%  95.08% 78.10%    94.20% - -

4.4 Ablation Study of α and β on CIFAR-10

We observe the effect of increasing the size of α and β by considering the ratio α: β=1:5 on CIFAR-10 dataset 
using ResNet framework. The network was optimized using SGD with a batch size of 128 [21]. For a fair 
comparison, the same learning rate was maintained for the different size of α and β. Table 4 show that the 
value of β, from 1 to 200, provides high test accuracy with increasing of values � and β in ResNet framework.
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Table 4. Effect of increasing α and β values on CIFAR-10 for β (1 to 200)

Model �, � Accuracy Loss Runtime(s) Bounded Non-Linear?

ResNet-20 � = −1,� = −5 - - - NaN -

� = 1, � = 5 89.80% 0.316 2548 -0.4697 to ∞ Yes

� = 7, � = 35 92.47% 0.279 2526 -0.2646 to ∞ Yes

� = 16, � = 80 92.69% 0.265 2502 -0.1549 to ∞ Yes

� = 40, � = 200 92.81% 0.262 2484 -0.0578 to  ∞ Yes

ResNet-20 � = −1,� = −5 - - - NaN -

� = 1, � = 5 90.46% 0.299 3954 -0.4697 to ∞ Yes

� = 7, � = 35 92.97% 0.278 4046 -0.2646 to ∞ Yes

� = 16, � = 80 93.08% 0.267 3991 -0.1549 to ∞ Yes

� = 40, � = 200 93.56% 0.2564 3940 -0.0578 to ∞ Yes

5. Conclusion

In this work, we propose to Bea-Mish a two-factor regularized non-monotonic activation function for 

machine learning applications in deep neural networks to solve gradient descent converges to the optimum 

challenge. We propose the Bea-Mish activation function with two-element regularizer of the Mish activation 

function. Bea-Mish demonstrates a clear understanding of the behaviors and conditions governing this 

regularization term may motivate a more principled approach to constructing better performing activation 

functions. Bea-Mish shares many properties with Mish, such as infinite positive domain, limited negative 

domain, non-monotonic form, and smooth out-growth. Empirical results show that Bea-Mish outperforms 

native Mish in all aspects of different datasets and neural architecture models. The future study includes 

evaluating the performance of the Bea-Mish activation function another state-of-the-art model on various tasks 

in the domain of computer vision such as object detection [22].
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