• 제목/요약/키워드: Learning Data Model

검색결과 4,686건 처리시간 0.044초

Discrimination of dicentric chromosome from radiation exposure patient data using a pretrained deep learning model

  • Soon Woo Kwon;Won Il Jang;Mi-Sook Kim;Ki Moon Seong;Yang Hee Lee;Hyo Jin Yoon;Susan Yang;Younghyun Lee;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3123-3128
    • /
    • 2024
  • The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997.

머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정 (Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors)

  • 박소련;손상훈;배재구;이도이;서동주;김진수
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.655-667
    • /
    • 2023
  • 전 세계적으로 녹조 대발생은 빈번하게 보고되고 있으며, 국내에서도 매년 녹조로 인한 심각한 수질 오염 문제가 발생하고 있다. 지속적인 관리와 신속한 대응을 통한 수생태계 보호가 필요하다. 녹조 발생의 지표인 chlorophyll-a (Chl-a) 농도를 예측하기 위해 위성 영상을 이용한 연구가 많이 이루어지고 있다. 하지만 수계에 따라 변하는 분광특성과 대기 보정 오류로 인해 정확한 Chl-a 산출에 어려움이 있어 최근 머신러닝 모델을 활용하고 있다. 위성 분광지수 뿐만 아니라 녹조에 영향을 미치는 인자들에 대한 복합적인 고려가 필요하다. 따라서, 본 연구는 수질, 수문 및 기상 인자와 Sentinel-2 영상을 복합적으로 고려하여 데이터셋을 구축하였다. 최근 5년간 낙동강에 위치한 8개 보 구간의 Chl-a 농도 예측에 대표적인 앙상블 모델 random forest (RF)와 extreme gradient boosting (XGBoost)을 활용하였다. 모델 평가 지표로 r-squared score (R2), root mean square errors(RMSE), mean absolute errors (MAE)를 사용하였으며, XGBoost의 R2가 0.810, RMSE가 6.612, MAE가 4.457로 유의미한 결과를 얻은 것을 확인하였다. Shapley additive explanations (SHAP) 분석을 통해 두 모델 모두 수질 인자 suspended solids (SS), biochemical oxygen demand (BOD), dissolved oxygen (DO)과 red edge 밴드를 활용한 밴드비가 높은 중요도를 보인 것을 알 수 있었다. 다양한 입력 데이터는 모델 성능 향상에 도움을 주는 것을 확인할 수 있었으며, 국내외 녹조 탐지에 적용될 수 있을 것으로 보인다.

부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법 (Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model)

  • 조수현;신경식
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.307-332
    • /
    • 2022
  • 부도예측모형은 여러 금융기관의 신용평가모형의 지식기반(knowledge base)로 이용되고 있으며 최근 머신러닝 기법의 발전으로 이를 도입하여 고도화하려는 다양한 시도가 진행 중이다. 그러나 실제 이러한 모형이 도입되기 위해서는 모형을 이용하는 사용자와 설명제공 대상인 고객의 이해와 수용이 전제되어야 한다. 그러나 사용자에게 제공되는 설명이 현실적 타당성(feasibility)이 결여되어 있다면 모형의 신뢰성과 수용도에 부정적인 영향을 미친다. 이에 따라 본 연구는 도메인 지식을 설명 생성 알고리즘에 통합하여 현실적으로 타당한 설명을 사용자에게 제공하고자 한다. 본 연구에서는 머신러닝 기반의 부도예측 모형에 설명력을 더하는 방법으로 반사실적 예시(counterfactual example) 기반의 로컬영역에서의 설명을 제공하는 모델을 제안한다. 제안 모델은 모형에 이용된 재무변수의 특성을 설명력 생성 알고리즘에 통합하여 설명의 현실적 가능성을 확보하고 이를 통해 사용자의 이해와 수용을 도모하고자 한다. 또한 본 연구에서는 반사실적 예시기반 설명을 위해 유전알고리즘(GA)를 이용하며 다목적함수를 목적함수로 설정하여 반사실적 예시의 주요 기준이 되는 항목을 반영하고 있다. 본 연구는 대표적인 머신러닝 기법인 인공신경망을 이용해 부도예측모형을 학습시킨 뒤, 사후적 방법(post-hoc)으로 설명을 위한 알고리즘을 도입하여 기존의 모형 설명 알고리즘인 LIME과 현실적 가능성이 결여된 반사실적 예시 기반 알고리즘과 비교하였다. 더 나아가 제안방법의 금융/회계 분야의 종사자를 대상으로 서베이를 진행하여 제안 방법의 설명의 질을 정성적으로 평가하였다.

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

한반도 고수온 예측 시스템의 수온 과소모의 보정을 위한 LSTM 모델 구축 및 예측성 평가 (Development and Assessment of LSTM Model for Correcting Underestimation of Water Temperature in Korean Marine Heatwave Prediction System)

  • 임나경;진현근;박균도;박영규;김경옥;최용한;김영호
    • 한국해양학회지:바다
    • /
    • 제29권2호
    • /
    • pp.101-115
    • /
    • 2024
  • 해양의 고수온 현상은 지구온난화로 인한 주요 문제 중 하나로, 식량 자원의 감소와 해양 탄소 흡수력의 저하 등, 해양 생태계와 인류에게 직접적인 위협으로 부상하고 있다. 따라서, 한반도 주변 해역에서의 고수온 예측은 해양 환경 모니터링 및 관리에 중요하다. 본 연구에서는 역학 모델 기반 한반도 고수온 예측 시스템의 성긴 해양의 수직격자체계로 인한 고수온 예측의 과소모의를 개선하기 위해 LSTM 모델을 개발하였다. 2023년에 대해 수행된 한반도 고수온 예측 시스템의 고수온 예측 결과와 LSTM 모델의 결과를 기반으로 한반도 주변의 동해 해역, 황해 해역 그리고 남해 해역에서의 고수온 예측 성능을 평가했다. 본 연구에서 개발된 LSTM 모델이 세 영역 모두에서 수온이 상승하는 시기에 수온 예측 성능을 크게 개선하는 것으로 나타났으며, 수온 상승이 시작되기 전이나 하강하는 시기에는 예측 성능의 개선 효과가 미미했다. 이는 LSTM 모델이 성층이 강화되는 환경에서 성긴 수직격자로 인해 발생하는 고수온 예측의 과소모의를 개선할 수 있는 가능성을 보여준다. 향후 역학 모델의 예측 성능 개선이나 역학 모델의 대체에 자료기반 인공지능 모델의 활용성이 확대될 것으로 기대한다.

중학생들의 수학 흥미와 성취도의 종단적 변화에 따른 잠재집단 분류 및 영향요인 탐색: 다변량 성장혼합모형을 이용하여 (Classification of latent classes and analysis of influencing factors on longitudinal changes in middle school students' mathematics interest and achievement: Using multivariate growth mixture model)

  • 김래영;한수연
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권1호
    • /
    • pp.19-33
    • /
    • 2024
  • 본 연구는 중학생들의 수학 흥미와 성취도의 종단적인 변화 양상을 알아보기 위해 경기교육종단연구 4-6차년도 데이터를 분석하였다. 다변량 성장혼합모형을 이용하여 분석한 결과 학생들의 수학 흥미와 성취도의 변화 양상에 이질적인 특성이 존재함을 확인하였고, 종단적인 변화 양상에 따라 학생들을 4개의 잠재집단으로 구분하였다. 학생들은 흥미와 성취도가 모두 낮은 저수준 유형, 모두 높은 고수준 유형, 학년이 올라감에 따라 증가하는 중수준-증가 유형, 학년이 올라감에 따라 감소하는 중수준-감소 유형으로 구분되었으며, 유형마다 흥미와 성취도의 종단적인 변화 양상이 다르게 나타나는 것을 확인하였다. 또한, 다변량 성장혼합모형의 초기값과 기울기 사이의 상관관계를 분석한 결과, 수학 흥미와 성취도는 초기값뿐 아니라 변화율에 있어서도 서로 긍정적인 영향이 있는 것으로 나타났다. 잠재집단의 결정에 영향을 미치는 요인을 개인, 수업방식, 가정 변인으로 나누어 그 영향력을 살펴보았고, 학생의 교육포부와 사교육 시간은 수학 흥미 및 성취도에 긍정적인 영향을 미치며 선행학습의 경우 그 정도에 따라 영향력이 달라지는 양상을 확인하였다. 학생이 인식한 수업방식의 경우, 교수자 중심 수업은 흥미와 성취도가 높은 집단에 속할 확률을 높이고, 학습자 중심 수업은 흥미와 성취도가 낮은 집단에 속할 확률을 높이는 것으로 나타났다. 본 연구는 다변량 성장혼합모형을 통해 수학교육에서 흥미와 성취도를 비롯한 다양한 특성에 대한 학생들의 변화 양상을 분석하는 새로운 방법을 제시하였다는 점에서 의의가 있다.

환경요인을 이용한 다층 퍼셉트론 기반 온실 내 기온 및 상대습도 예측 (Prediction of Air Temperature and Relative Humidity in Greenhouse via a Multilayer Perceptron Using Environmental Factors)

  • 최하영;문태원;정대호;손정익
    • 생물환경조절학회지
    • /
    • 제28권2호
    • /
    • pp.95-103
    • /
    • 2019
  • 온도와 상대습도는 작물 재배에 있어서 중요한 요소로써, 수량과 품질의 증대를 위해서는 적절히 제어 되어야 한다. 그리고 정확한 환경 제어를 위해서는 환경이 어떻게 변화할지 예측할 필요가 있다. 본 연구의 목적은 현시점의 환경 데이터를 이용한 다층 퍼셉트론(multilayer perceptrons, MLP)을 기반으로 미래 시점의 기온 및 상대습도를 예측하는 것이다. MLP 학습에 필요한 데이터는 어윈 망고(Mangifera indica cv. Irwin)을 재배하는 8연동 온실($1,032m^2$)에서 2016년 10월 1일부터 2018년 2월 28일까지 10분 간격으로 수집되었다. MLP는 온실내부 환경 데이터, 온실 외 기상 데이터, 온실 내 장치의 설정 및 작동 값을 사용하여 10~120분 후 기온 및 상대습도를 예측하기 위한 학습을 진행하였다. 사계절이 뚜렷한 우리나라의 계절에 따른 예측 정확도를 분석하기 위해서 테스트 데이터로 계절별로 3일간의 데이터를 사용했다. MLP는 기온의 경우 은닉층이 4개, 노드 수가 128개일 때($R^2=0.988$), 상대습도는 은닉층 4개, 노드 수 64개에서 가장 높은 정확도를 보였다($R^2=0.990$). MLP 특성상 예측 시점이 멀어질수록 정확도는 감소하였지만, 계절에 따른 환경 변화에 무관하게 기온과 상대습도를 적절히 예측하였다. 그러나 온실 내 환경 제어 요소 중 분무 관수처럼 특이적인 데이터의 경우, 학습 데이터 수가 적기 때문에 예측 정확도가 낮았다. 본 연구에서는 MLP의 최적화를 통해서 기온 및 상대습도를 적절히 예측하였지만 실험에 사용된 온실에만 국한되었다. 따라서 보다 일반화를 위해서 다양한 장소의 온실 데이터 이용과 이에 따른 신경망 구조의 변형이 필요하다.

딥 러닝 분류 모델을 이용한 직하방과 경사각 영상 기반의 벼 출수기 판별 (Estimation of Rice Heading Date of Paddy Rice from Slanted and Top-view Images Using Deep Learning Classification Model)

  • 박혁진;상완규;장성율;권동원;임우진;이지현;정남진;조정일
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.337-345
    • /
    • 2023
  • 벼의 출수기를 추정하는 것은 농업생산성과 관련된 중요한 과정 중 하나이지만 세계적인 이상기후의 증가로 벼의 출수기를 추정하는 것이 어려워지고 있다. 본 연구에서는 CNN 분류모델을 사용하여 다양한 영상데이터에서 벼의 출수기를 추정하려고 시도하였다. 드론과 타워형 영상관측장치 그리고 일반 RGB 카메라로 촬영된 직하방과 경사각 영상을 수집하였다. 수집한 영상은 CNN 모델의 입력데이터로 사용하기 위해서 전처리를 진행하였고, 사용된 CNN 아키텍처는 이미지 분류 모델에서 일반적으로 사용되는 ResNet50, InceptionV3 그리고 VGG19 를 사용하였다. 각각의 아키텍처는 모델의 종류, 영상의 유형과 관계없이 0.98 이상의 정확도를 나타내었다. 또한 CNN 분류 모델이 영상의 어떤 특징을 보고 분류하였는지 시각적으로 확인하기 위해서 Grad-CAM 을 사용하였다. Grad-CAM 결과 CNN 분류 모델은 벼의 출수를 이삭의 형태에 높은 가중치를 두어 분류 하는 것을 확인하였다. 다음으로 작성된 모델이 실제 논 포장 모니터링 이미지에서 벼의 출수기를 정확하게 추정하는지 확인하였다. 각각 다른 지역 4 개의 벼 포장에서 벼의 출수기를 약 하루정도의 차이로 추정하는 것을 확인하였다. 이 방법을 통해서 다양한 논 포장의 모니터링 이미지를 활용하여 자동적이고 정량적으로 벼의 출수기를 추정 할 수 있다고 판단된다.

고등학생의 건강 및 삶의 질에 대한 진단적 연구 - PRECEDE 모형을 근간으로 - (A Diagnostic Study on High School Students' Health and Quality of Life - Based on the PRECEDE model -)

  • 유재순;홍여신
    • 한국간호교육학회지
    • /
    • 제3권
    • /
    • pp.78-98
    • /
    • 1997
  • Health education, as the most fundamental concept for national health promotion, alms for developing the self-care ability of the general public. High school days are regarded as the period when most important physical, mental and social developments occur, and most health-related behaviors are formed. School health education is one of the major learning resources influencing health potential in the home and community as well as for the individual student. High school health education in Korea has a fundamental systemic flaw in that health-related subjects are divided and taught under various subjects areas at school. In order to achieve the goal of school health education, it is essential to make a systematic assessment of the learner's concerns connected with his health and life, and the factors affecting them. So far, most of the research projects that had been carried out for improving high school health education were limited in their concerns to a particular aspect of health. Even though some had been done in view of comprehensive school health education, they failed to Include a health assessment of the learner. Therefore, in this study the high school students' concerns related to health and life were investigated in the first place on the basis of the PRECEDE model, developed by Green and others for the purpose of a comprehensive diagnostic research on high school health education. This study was done in two steps : one was the basic study for developing research instrument and the other was the main one. The former was conducted at five high schools in Seoul and Cheongju for 2 months-beginning in March, 1996. The students were asked to respond to questions related to their health and lives in unstructured open-ended question forms. On the basis of analysis of the basic study, the diagnostic instruments for the quality of life, health problems, health behavior and educational factors were constructed to be used for the collection of data for main study. An expert panel and the pilot study were used to improve content validity and reliability of the instruments. The reliability of the instruments was measured at between .7697 and .9611 by the Cronbach $\alpha$. The data for this study were collected from the sample consisted of the junior and senior classes of twenty general and vocational high schools in Seoul and Cheongju for two months period beginning in July, 1996. In analyzing the data, both t-test and $X^2$-test were done by using SAS-$PC^+$ Program to compare data between the sexes of the high school students and the types of high school. A canonical correlation analysis was carried out to determine the relationships among the diagnostic variables, and a multivariate multiple regression analysis was conducted by using LISREL 8.03 to ascertain the influences of variables on the high school students' health and quality of life. The results were as follows : 1) The findings of the hypothesis tests (1) The canonical correlation between the educational diagnosis variables and behavioral, epidemiological, social diagnosis variables was .7221, which was significant at the level of p<.001. (2) The canonical correlation between the educational diagnosis variables and the behavior variables was .6851, which also was significant (p<.001). (3) The canonical correlation between the behavioral diagnosis variables and the epidemiological variables was 4295, which was significant (p<.001). (4) The canonical correlation between the epidemiological diagnosis variables and the social variables was .6005, which was also significant (p<.001). Therefore, the relationship between each diagnosis variable suggested by the PRECEDE model had been experimentally proven to be valid, supporting the conceptual framework of the study as appropriate for assessing the multi-dimensional factors affecting high school students' health and quality of life. Health behavior self-efficacy, the level of parents' interest and knowledge of health, and the level of the perception of school health education, all of which are the educational diagnostic variables, are the most influential variables in students' health and quality of life. In particular, health behavior self-efficacy, a causative factor, was one of the main influential variables in their health and quality of life. Other diagnostic variables suggested in the steps of the PRECEDE model were found to have reciprocal relations rather than a unidirectional causative relationship. The significance of this research is that it has diagnosed the needs of high school health education by the learner-centered assessment of variety of factors related to the health and the life of the students. This research findings suggest an integrated system of school health education to be contrived to enhance the effectiveness of the education by strengthening the influential factors such as self-efficacy to improve the health and quality of the lives of high school students.

  • PDF

LSTM을 이용한 한반도 근해 이상수온 예측모델 (Abnormal Water Temperature Prediction Model Near the Korean Peninsula Using LSTM)

  • 최혜민;김민규;양현
    • 대한원격탐사학회지
    • /
    • 제38권3호
    • /
    • pp.265-282
    • /
    • 2022
  • 해수면 온도(Sea surface temperature, SST)는 지구시스템에서 해양의 순환과 생태계에 큰 영향을 주는 요소이다. 지구온난화로 한반도 근해 해수면 온도에 변화가 생기면서 이상 수온(고수온, 저수온) 현상이 발생하여 해양생태계와 수산업 피해를 지속적으로 발생시키고 있다. 따라서 본 연구는 한반도 근해 해수면 온도를 예측하여 이상 수온 현상 예측으로 피해를 예방하는 방법론을 제안한다. 연구 지역은 한반도 근해로 설정하여 동시간대 해수면 온도 데이터를 사용하기 위해 Europe Centre for Medium-Range Weather Forecasts (ECMWF)의 ERA5 자료를 사용하였다. 연구방법으로는 해수면 온도 데이터의 시계열 특징을 고려하여 딥러닝 모델 중 시계열 데이터 예측에 특화된 Long Short-Term Memory (LSTM) 알고리즘을 이용하였다. 예측 모델은 1~7일 이후 한반도 근해 해수면 온도를 예측하고 고수온(High water temperature, HWT) 혹은 저수온(Low water temperature, LWT) 현상을 예측한다. 해수면 온도 예측 정확도 평가를 위해 결정계수(Coefficient of determination, R2), 평균제곱근 편차(Root Mean Squared Error, RMSE), 평균 절대 백분율 오차(Mean Absolute Percentage Error, MAPE) 지표를 사용하였다. 예측 모델의 여름철(JAS) 1일 예측 결과는 R2=0.996, RMSE=0.119℃, MAPE=0.352% 이고, 겨울철(JFM) 1일 예측 결과는 R2=0.999, RMSE=0.063℃, MAPE=0.646% 이었다. 예측한 해수면 온도를 이용하여 이상 수온 예측 정확도 평가를 F1 Score로 수행하였다(여름철(2021/08/05) 고수온 예측 결과 F1 Score=0.98, 겨울철(2021/02/19) 저수온 예측 결과 F1 Score=1.0). 예측 기간이 증가하면서 예측 모델이 해수면 온도를 과소추정하는 경향을 보여주었고, 이로 인해 이상 수온 예측 정확도 또한 낮아졌다. 따라서, 향후 예측 모델의 과소추정 원인을 분석하고 예측 정확도 향상을 위한 연구가 필요할 것으로 판단된다.