• Title/Summary/Keyword: Learning Cycle Model

Search Result 124, Processing Time 0.029 seconds

Analyses of Science Education Theories in the Question Items of the Examination for Appointing Secondary School Science Teachers (중등과학교사임용시험 문항에 나타난 과학교육학 이론의 분석)

  • Lee, Bongwoo;Shim, Kew-Cheol;Shin, Myeong-Kyeong;Kim, Jonghee;Choi, Jaehyeok;Park, Eunmi;Yoon, Jihyun;Kwon, Yongju;Kim, Yong-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.4
    • /
    • pp.794-806
    • /
    • 2013
  • The purpose of this study is to analyze what kinds of science education theories are targeted in the "Examination for Appointing Secondary School Science Teachers (EASST)." For the analyses, we extracted the contents related to the science education theories in the question items of the EASST of 2008 through 2012, and categorized those theories into science curriculum, history of science and philosophy of science, scientific inquiry, theory of teaching and learning, model of teaching and learning, and assessment. The results of this study indicated that the theory of teaching and learning appeared most frequently and there were high proportions of question items related to the following topics: contents in science curriculum, scientific method, contemporary philosophy of science, process of inquiry, Ausubel's theory, learning cycle model by Lawson, cooperative learning, criteria of performance assessment, and etc. While we, as science educators, believed that the other categories such as 'history of science' provides important topics for pre-service science teachers, questions items dealing with those were rarely found in the past EASSTs. As EASST has strong influences on the professional developments of pre-service science teachers, more research should be pursued on how much and what domains of science education theories would be appropriate for the test.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

The Effect of Information Technology on the Knowledge Management Activity from MANDO and POSCO (정보기술이 지식경영활동에 미치는 영향: 만도와 포스코 사례를 중심으로)

  • Choi, Eunsoo
    • Knowledge Management Research
    • /
    • v.9 no.2
    • /
    • pp.169-191
    • /
    • 2008
  • Information technology instruments arc being rampantly used for knowledge management in companies. IT is used as an interplay tool to enhance the flow of knowledge and information between people. KMS, especially, supports the knowledge management process including sharing, creating, and using of knowledge within a company, and maximizes the value of knowledge resources within an organization. The purpose of this paper is to understand how IT is changing the knowledge management activity. through various examples based on exploratory research from MANDO, the Korean automotive parts manufacturer, and POSCO, the global leading steelmaker. The result shows that IT boosts communication skills, thus creates a mutual relationship outcome. In the same context, the process of knowledge conversion by Nonaka's SECI model simplifies to an Externalization-Internalization process. This process accelerates the birth of explicit knowledge and Socialization, supplements the Limitations of the creation of knowledge in the E-I cycle. The E of knowledge simultaneously promotes the I, and eventually brings an advanced learning skill. IT aids the E of knowledge and furthermore, I and E activity, through the knowledge sharing, brings vitality into an organization. The interplay stage for knowledge activity is to be reorganized to a cyber ba. Furthermore, IT will galvanize the formation of core knowledge through systemized acquisition, management of core knowledge and standardization of work.

  • PDF

An Integrated Artificial Neural Network-based Precipitation Revision Model

  • Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1690-1707
    • /
    • 2021
  • Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.

A patent application filing forecasting method based on the bidirectional LSTM (양방향 LSTM기반 시계열 특허 동향 예측 연구)

  • Seungwan, Choi;Kwangsoo, Kim;Sooyeong, Kwak
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.545-552
    • /
    • 2022
  • The number of patent application filing for a specific technology has a good relation with the technology's life cycle and future industry development on that area. So industry and governments are highly interested in forecasting the number of patent application filing in order to take appropriate preparations in advance. In this paper, a new method based on the bidirectional long short-term memory(LSTM), a kind of recurrent neural network(RNN), is proposed to improve the forecasting accuracy compared to related methods. Compared with the Bass model which is one of conventional diffusion modeling methods, the proposed method shows the 16% higher performance with the Korean patent filing data on the five selected technology areas.

A Study on a Method for Detecting Leak Holes in Respirators Using IoT Sensors

  • Woochang Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.378-385
    • /
    • 2023
  • The importance of wearing respiratory protective equipment has been highlighted even more during the COVID-19 pandemic. Even if the suitability of respiratory protection has been confirmed through testing in a laboratory environment, there remains the potential for leakage points in the respirators due to improper application by the wearer, damage to the equipment, or sudden movements in real working conditions. In this paper, we propose a method to detect the occurrence of leak holes by measuring the pressure changes inside the mask according to the wearer's breathing activity by attaching an IoT sensor to a full-face respirator. We designed 9 experimental scenarios by adjusting the degree of leak holes of the respirator and the breathing cycle time, and acquired respiratory data for the wearer of the respirator accordingly. Additionally, we analyzed the respiratory data to identify the duration and pressure change range for each breath, utilizing this data to train a neural network model for detecting leak holes in the respirator. The experimental results applying the developed neural network model showed a sensitivity of 100%, specificity of 94.29%, and accuracy of 97.53%. We conclude that the effective detection of leak holes can be achieved by incorporating affordable, small-sized IoT sensors into respiratory protective equipment.

Exploring the Core Keywords of the Secondary School Home Economics Teacher Selection Test: A Mixed Method of Content and Text Network Analyses (중등학교 가정과교사 임용시험의 핵심 키워드 탐색: 내용 분석과 텍스트 네트워크 분석을 중심으로)

  • Mi Jeong, Park;Ju, Han
    • Human Ecology Research
    • /
    • v.60 no.4
    • /
    • pp.625-643
    • /
    • 2022
  • The purpose of this study was to explore the trends and core keywords of the secondary school home economics teacher selection test using content analysis and text network analysis. The sample comprised texts of the secondary school home economics teacher 1st selection test for the 2017-2022 school years. Determination of frequency of occurrence, generation of word clouds, centrality analysis, and topic modeling were performed using NetMiner 4.4. The key results were as follows. First, content analysis revealed that the number of questions and scores for each subject (field) has remained constant since 2020, unlike before 2020. In terms of subjects, most questions focused on 'theory of home economics education', and among the evaluation content elements, the highest percentage of questions asked was for 'home economics teaching·learning methods and practice'. Second, the network of the secondary school home economics teacher selection test covering the 2017-2022 school years has an extremely weak density. For the 2017-2019 school years, 'learning', 'evaluation', 'instruction', and 'method' appeared as important keywords, and 7 topics were extracted. For the 2020-2022 school years, 'evaluation', 'class', 'learning', 'cycle', and 'model' were influential keywords, and five topics were extracted. This study is meaningful in that it attempted a new research method combining content analysis and text network analysis and prepared basic data for the revision of the evaluation area and evaluation content elements of the secondary school home economics teacher selection test.

Development and Instructional Effect of Digital Textbook for the Biological Evolution Unit in Middle School Science (중학교 '진화' 단원 디지털 교재 개발 및 적용)

  • Jeong, Yu-na;Cha, Heeyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.1
    • /
    • pp.89-99
    • /
    • 2019
  • The purpose of this study is to investigate the effect of students' formation of evolutionary concept and learning on the development of digital teaching materials. The explanation of biological evolution, which explains the changes that living organisms undergo over a long period of time, can provide various contents for use in a book. The production and editing of images in digital textbooks would provide explanation of difficult concepts in a fun way. For this study, we designed instructional materials consisting of four class hours using iBooks Author, an electronic book authoring tool based on the 5E learning cycle model. In order to verify the effectiveness of the developed digital textbooks, we compared instructions by the general textbooks to those using digital textbooks. Both teaching through general textbook form and teaching using digital textbook materials had a significant effect on the formation of the concept of evolution, but interest in biological science and evolution increased significantly only in the group taught using digital textbooks. As a result of testing the instruction effect by the digital textbooks by classifying the students by type, the group that is familiar with smart devices was more active and interesting in class depending on digital literacy. The satisfaction of the developed digital textbooks also showed a positive score in the group with high digital literacy. The results of this study suggest that the development of digital textbooks in the unit of evolution can be an instructional material for easy and interesting approach to difficult concepts in the teaching of evolution.

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

Deep Learning Architectures and Applications (딥러닝의 모형과 응용사례)

  • Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.