• 제목/요약/키워드: Learning Control Algorithm

Search Result 947, Processing Time 0.042 seconds

Local Path Planning Design of Autonomous Mobile Robot using The Direction Indicator Rules Learning (조향규칙 학습을 이용한 자율주행로봇의 지역경로계획설계)

  • Park, Kyung-Seok;Choi, Han-Soo;Jeong, Heon
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.25-28
    • /
    • 2002
  • The path planning of autonomous mobile robot use two method. One is global path planning and another is local path planning. In this paper, We study the local path planning of autonomous mobile robot move in unknown enviroment. This local path planning is based on neural network using the direction indicator rules learning. also the system is made up of sensor system. The motion control system for real-time execution. The experimental results show that the developed direction indicator system operates properly and strongly at circumstance.

  • PDF

Modeling of a 5-Bar Linkage Robot Manipulator with Joint Flexibility Using Neural Network (신경 회로망을 이용한 유연한 축을 갖는 5절 링크 로봇 메니퓰레이터의 모델링)

  • 이성범;김상우;오세영;이상훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.431-431
    • /
    • 2000
  • The modeling of 5-bar linkage robot manipulator dynamics by means of a mathematical and neural architecture is presented. Such a model is applicable to the design of a feedforward controller or adjustment of controller parameters. The inverse model consists of two parts: a mathematical part and a compensation part. In the mathematical part, the subsystems of a 5-bar linkage robot manipulator are constructed by applying Kawato's Feedback-Error-Learning method, and trained by given training data. In the compensation part, MLP backpropagation algorithm is used to compensate the unmodeled dynamics. The forward model is realized from the inverse model using the inverse of inertia matrix and the compensation torque is decoupled in the input torque of the forward model. This scheme can use tile mathematical knowledge of the robot manipulator and analogize the robot characteristics. It is shown that the model is reasonable to be used for design and initial gain tuning of a controller.

  • PDF

A Study on the PID controller auto-tuning using neural network learning (신경망 학습을 이용한 PID제어기 자동동조에 관한 연구)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.458-460
    • /
    • 2009
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF

Auto-tuning of PID Controller using Neural Network (신경회로망을 이용한 PID 제어기 자동동조)

  • Oh, Hun;Choi, Seok-Ho;Yoon, Yang-Woong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.7-13
    • /
    • 1998
  • In this paper, the control technique that ID controller are autotuned according to system dynamics, driving out sample in the changeable limits of system dynamics and learning neural network, is presented. In order to lean neural network, the backpropagation learning algorithm is used and the controller parameters obtained by rule-base are used as teacher's values. When load changes, the auto-tuning of PID controller proper to system dynamics is conformed by simulation.

  • PDF

Development of Daily Peak Power Demand Forecasting Algorithm using ELM (ELM을 이용한 일별 최대 전력 수요 예측 알고리즘 개발)

  • Ji, Pyeong-Shik;Kim, Sang-Kyu;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.169-174
    • /
    • 2013
  • Due to the increase of power consumption, it is difficult to construct an accurate prediction model for daily peak power demand. It is very important work to know power demand in next day to manage and control power system. In this research, we develop a daily peak power demand prediction method based on Extreme Learning Machine(ELM) with fast learning procedure. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

Character Recognition Based on Adaptive Statistical Learning Algorithm

  • K.C. Koh;Park, H.J.;Kim, J.S.;K. Koh;H.S. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.2-109
    • /
    • 2001
  • In the PCB assembly lines, as components become more complex and smaller, the conventional inspection method using traditional ICT and function test show their limitations in application. The automatic optical inspection(AOI) gradually becomes the alternative in the PCB assembly line. In Particular, the PCB inspection machines need more reliable and flexible object recognition algorithms for high inspection accuracy. The conventional AOI machines use the algorithmic approaches such as template matching, Fourier analysis, edge analysis, geometric feature recognition or optical character recognition (OCR), which mostly require much of teaching time and expertise of human operators. To solve this problem, in this paper, a statistical learning based part recognition method is proposed. The performance of the ...

  • PDF

COLLISION-FREE TRAJECTRY PLANNING FOR DUAL ROBOT ARMS USING ITERATIVE LEARNING CONCEPT

  • Suh, Il-Hong;Chong, Nak-Young;Choi, Donghun;Shin, Kang-G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.627-634
    • /
    • 1989
  • A collision-free trajectory planning algorithm using the iterative learning concept is proposed for dual robot arms in a 3-D workspace to accurately follow their specified paths with constant velocities. Specifically, a collision-free trajectory minimizing the trajectory error is obtained first by employing the linear programming technique. Then the total operating time is iteratively adjusted based on the maximum trajectory error of the previous iteration so that the collision-free trajectory has no deviation from the specified path and also the operating time is near-minimal.

  • PDF

Evolutionary Reinforcement Learning System with Time-Varying Parameters

  • Song, Se-Kyong;Choi, J.Y.;Sung, H.K.;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.78.5-78
    • /
    • 2002
  • We propose an evolutionary reinforcement learning (RL) system with time-varying parameters that can deal with a dynamic environment. The proposed system has three characteristics: 1) It can deal easily with a dynamic environment by using time-varying parameters; 2) The division of state space is acquired evolutionarily by genetic algorithm (GA); 3) One does not have to design the rules constructing an agent in advance. So far many RL systems have been proposed. These systems adjust constant or non time-varying parameters; by those systems it is difficult to realize appropriate behavior in complex and dynamic environment. Hence, we propose the RL system whose parameters can vary temporally. T...

  • PDF

STUDY ON APPLICATION OF NEURO-COMPUTER TO NONLINEAR FACTORS FOR TRAVEL OF AGRICULTURAL CRAWLER VEHICLES

  • Inaba, S.;Takase, A.;Inoue, E.;Yada, K.;Hashiguchi, K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.124-131
    • /
    • 2000
  • In this study, the NEURAL NETWORK (hereinafter referred to as NN) was applied to control of the nonlinear factors for turning movement of the crawler vehicle and experiment was carried out using a small model of crawler vehicle in order to inspect an application of NN. Furthermore, CHAOS NEURAL NETWORK (hereinafter referred to as CNN) was also applied to this control so as to compare with conventional NN. CNN is especially effective for plane in many variables with local minimum which conventional NN is apt to fall into, and it is relatively useful to nonlinear factors. Experiment of turning on the slope of crawler vehicle was performed in order to estimate an adaptability of nonlinear problems by NN and CNN. The inclination angles of the road surface which the vehicles travel on, were respectively 4deg, 8deg, 12deg. These field conditions were selected by the object for changing nonlinear magnitude in turning phenomenon of vehicle. Learning of NN and CNN was carried out by referring to positioning data obtained from measurement at every 15deg in turning. After learning, the sampling data at every 15deg were interpolated based on the constructed learning system of NN and CNN. Learning and simulation programs of NN and CNN were made by C language ("Association of research for algorithm of calculating machine (1992)"). As a result, conventional NN and CNN were available for interpolation of sampling data. Moreover, when nonlinear intensity is not so large under the field condition of small slope, interpolation performance of CNN was a little not so better than NN. However, when nonlinear intensity is large under the field condition of large slope, interpolation performance of CNN was relatively better than NN.

  • PDF

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.