• Title/Summary/Keyword: Learning Algorithms

Search Result 2,317, Processing Time 0.022 seconds

Learning soccer robot using genetic programming

  • Wang, Xiaoshu;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.292-297
    • /
    • 1999
  • Evolving in artificial agent is an extremely difficult problem, but on the other hand, a challenging task. At present the studies mainly centered on single agent learning problem. In our case, we use simulated soccer to investigate multi-agent cooperative learning. Consider the fundamental differences in learning mechanism, existing reinforcement learning algorithms can be roughly classified into two types-that based on evaluation functions and that of searching policy space directly. Genetic Programming developed from Genetic Algorithms is one of the most well known approaches belonging to the latter. In this paper, we give detailed algorithm description as well as data construction that are necessary for learning single agent strategies at first. In following step moreover, we will extend developed methods into multiple robot domains. game. We investigate and contrast two different methods-simple team learning and sub-group loaming and conclude the paper with some experimental results.

  • PDF

Analysis of Feature Extraction Algorithms Based on Deep Learning (Deep Learning을 기반으로 한 Feature Extraction 알고리즘의 분석)

  • Kim, Gyung Tae;Lee, Yong Hwan;Kim, Yeong Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Recently, artificial intelligence related technologies including machine learning are being applied to various fields, and the demand is also increasing. In particular, with the development of AR, VR, and MR technologies related to image processing, the utilization of computer vision based on deep learning has increased. The algorithms for object recognition and detection based on deep learning required for image processing are diversified and advanced. Accordingly, problems that were difficult to solve with the existing methodology were solved more simply and easily by using deep learning. This paper introduces various deep learning-based object recognition and extraction algorithms used to detect and recognize various objects in an image and analyzes the technologies that attract attention.

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

Cluster Analysis Algorithms Based on the Gradient Descent Procedure of a Fuzzy Objective Function

  • Rhee, Hyun-Sook;Oh, Kyung-Whan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.191-196
    • /
    • 1997
  • Fuzzy clustering has been playing an important role in solving many problems. Fuzzy c-Means(FCM) algorithm is most frequently used for fuzzy clustering. But some fixed point of FCM algorithm, know as Tucker's counter example, is not a reasonable solution. Moreover, FCM algorithm is impossible to perform the on-line learning since it is basically a batch learning scheme. This paper presents unsupervised learning networks as an attempt to improve shortcomings of the conventional clustering algorithm. This model integrates optimization function of FCM algorithm into unsupervised learning networks. The learning rule of the proposed scheme is a result of formal derivation based on the gradient descent procedure of a fuzzy objective function. Using the result of formal derivation, two algorithms of fuzzy cluster analysis, the batch learning version and on-line learning version, are devised. They are tested on several data sets and compared with FCM. The experimental results show that the proposed algorithms find out the reasonable solution on Tucker's counter example.

  • PDF

The Present and Perspective of Quantum Machine Learning (양자 기계학습 기술의 현황 및 전망)

  • Chung, Wonzoo;Lee, Seong-Whan
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.751-762
    • /
    • 2016
  • This paper presents an overview of the emerging field of quantum machine learning which promises an innovative expedited performance of current classical machine learning algorithms by applying quantum theory. The approaches and technical details of recently developed quantum machine learning algorithms that have been able to substantially accelerate existing classical machine learning algorithms are presented. In addition, the quantum annealing algorithm behind the first commercial quantum computer is also discussed.

Analysis on Types of Errors in Learning about Control Structures of Programming using Flowchart (순서도를 활용한 프로그래밍 제어 구조 학습에 나타난 오류 유형 분석)

  • Choe, Hyunjong
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.1
    • /
    • pp.101-109
    • /
    • 2016
  • Designing algorithms is a very important learning process in computational thinking education because it requires learner's logical and procedural thinking. But the case studies that have topics of algorithms learning and students' types of errors in learning algorithms are not enough. So the purpose of this study is to analyze students' errors that discovered in the process of learning three control structures of programming using flowchart and provide types of errors in designing algorithms. Results about tests of three types of control structures in university student's algorithms learning class showed different cases of types of errors; types of sequential control error are not presented in the class, types of conditional control error are presented in the case of setting the conditions of nested conditional control, and types of iterative control are showed in the many cases of iterative conditions, statements of single and nested iterative control structure. The results of study will be a good case study about teaching designing algorithms of computational thinking education in elementary, secondary school and university.

Comparison of Reinforcement Learning Algorithms for a 2D Racing Game Learning Agent (2D 레이싱 게임 학습 에이전트를 위한 강화 학습 알고리즘 비교 분석)

  • Lee, Dongcheul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.171-176
    • /
    • 2020
  • Reinforcement learning is a well-known method for training an artificial software agent for a video game. Even though many reinforcement learning algorithms have been proposed, their performance was varies depending on an application area. This paper compares the performance of the algorithms when we train our reinforcement learning agent for a 2D racing game. We defined performance metrics to analyze the results and plotted them into various graphs. As a result, we found ACER (Actor Critic with Experience Replay) achieved the best rewards than other algorithms. There was 157% gap between ACER and the worst algorithm.

Decentralized Iterative Learning Control in Large Scale Linear Dynamic Systems (대규모 선형 시스템에서의 비집중 반복 학습제어)

  • ;Zeungnam Bien
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1098-1107
    • /
    • 1990
  • Decentralized iterative learning control methods are presented for a class of large scale interconnected linear dynamic systems, in which iterative learning controller in each subsystem operates on its local subsystem exclusively with no exchange of information between subsystems. Suffcient conditions for convergence of the algorithms are given and numerical examples are illustrated to show the validity of the algorithms. In particular, the algorithms are useful for the systems having large uncertainty of inter-connected terms.

  • PDF

Learning Algorithms of Fuzzy Counterpropagation Networks

  • Jou, Chi-Cheng;Yih, Chi-Hsiao
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.977.1-1000
    • /
    • 1993
  • This paper presents a fuzzy neural network, called the fuzzy counterpropagation network, that structures its inputs and generates its outputs in a manner based on counterpropagation networks. The fuzzy counterpropagation network is developed by incorporating the concept of fuzzy clustering into the hidden layer responses. Three learning algorithms are introduced for use with the proposed network. Simulations demonstrate that fuzzy counterpropagation networks with the proposed learning algorithms work well on approximating bipolar and continuous functions.

  • PDF

A study on the Hand Gesture Recognition using Instance Based Learning and Symbolic Learning Algorithms (인스턴스 기본 학습과 상징적 학습 알고리즘을 이용한 핸드제스쳐의 인식에 관한 연구)

  • Choi, S.K.;Lee, J.W.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.44-47
    • /
    • 1997
  • This paper is a study on the hand gesture recognition using Instance-based teaming, Symbolic learning algorithms and Power Glove which supplies information on finger position, hand position and orientation. The data were carefully examined, and a few features of the data that would serve as good discriminants between signs when used with the learning algorithms were extracted. The hand gesture data collected from 5 people were applied to the teaming algorithms. In spite of the noise and accuracy constraints of the equipment used, some accuracy rates were achieved.

  • PDF