Proceedings of the 14"
KACC, Octorber 1999

Learning soccer robot using genetic programming

Xiaoshu Wang* and Masanori Sugisaka**
Dept. of Electrical and Electronic Engineering
Oita University, 700 Dannahara,Oita 870-1192, Japan
Tel: +81-97-5547831; Fax: +81-97-5547841
{wangxs",msugi}@cc.oita-u.ac.jp

ABSTRACT

Evolving in artificial agent is an extremely
difficult problem, but on the other hand, a
challenging task. At present the studies mainly
centered on single agent learning problem. In our
case, we use simulated soccer to investigate multi-
agent cooperative learning. Consider the
fundamental differences in learning mechanism,
existing reinforcement learning algorithms can be
roughly classified into two types-that based on
evaluation functions and that of searching policy
space directly. Genetic Programming developed
from Genetic Algorithms is one of the most well
known approaches belonging to the latter. In this
paper, we give detailed algorithm description as well
as data construction that are necessary for learning
single agent strategies at first. In following step
moreover, we will extend developed methods into
multiple robot domains. game. We investigate and
contrast two different methods-simple team learning
and sub-group learning and conclude the paper with
some experimental results.

Keywords: Genetic Algorithms, Genetic
Programming, Multi-agent system, Machine
Learning

1 INTRODUCATION

Learning is the problem faced by an agent of
how to obtain optimal problem-resolving policy
through trial-and-error interactions with a dynamic
environment. Consider the basic differences in
learning mechanism, we can roughly classify
existing reinforcement learning (RL) algorithms into
two types. The first includes those that base on
adaptive Evaluation Functions (EFs) such as Q-
learning presented by Watkins in 1989 and all kinds
of variants of it. To the contrary, methods from the
second class do not require EFs. They search
through the policy space directly to obtain optimal
policies eventually. One of the most widely known
EFs-free approaches is Genetic Programming(GP)
proposed by Koza' in 1992. For explanation in more
detail, a survey of RL written by Leslie® et al is a

good reference, 1 think. Originally both of them
were introduced in order to solve single agent
learning problems. But recently multi-agent learning
received more and more attentions. In our case, we
use simulated soccer to investigate multi-agent
cooperative learning. In order to extend existing
approaches into multi-agent domains, following two
thoughts are obvious. The first is to handle each
agent in multi-agent domain just with existing single
agent RL algorithms while other agents are treated
as parts of environment. The another method is to
treat all agents as an indivisible unity. Then some
changes must be made to make existing strategies
suitable to deal with new conditions.

2 MACHINE LEARNING

At first let’s consider problems of machine
learning in a general way. Markov decision processes
(MDPs) define a standard model for it as following.

1) a set of states .S,

2) a set of actions A,

3) a reward(or cost) function R: SxA U IR,

4) a state transition function 7. Sx4 Z7(S).
where(Jis a discrete probability distribution
over set S.

Consider a MDP model shown above, the goal
of learning becomes to search optimal policy to
maximize expected reward (or, minimize total
expected discounted cost). Let’s Denote policy as O,
then the optimal polity based on MDPs model can be
described as

v* (s) =max(R(s,a)+y z T(s,a, s’)V* (s"),Vaec 4

s'eS

7" (s) =argl " (s),
where R is the instantaneous reward, s resulting
state, and 7(5,a,s) the probability of taking action a
in state s. V is evaluation function of a state. In other
words, it is a value that agent can gain if it starts in
state s and executes a policy (1. Now the problem of
searching optimal policy becomes how to define an

E-292

easy-to-computing V" function. A conceptually
simple approach to solve the problem is Q-learning
introduced by Watkins in 1989. He define

V¥ (s)=max Q" (s,a),Vae 4,
a

Where Q'(s,a) is the expected reward (or discounted
gain) of taking action a in state s, which is defined
as

Q*(s,a)=R(s,a)+7) T(s,a,5)max Q" (s "),
s'eS a

Where
O@s,a):=Q(s,a) +a(r+y max O(s',a) - QO(s, a)).

Then Qfs,a) can be computed in recursive. But
we can find that in order to use Q-learning,
knowledge about system’s state transition
probability 7(s,a,s) and reinforcement function
R(s,a) are essential. But to most system, especially
multi-agent system, that can not be modeled well, it
is still very difficult to get them.

By contrast with EF-based learning briefly
explained above, recently studies of how to search
optimal policy in policy place directly develop
quickly. Among them Genetic Programming(GP)
proposed by Koza in 1992 is most well known. In
fact GP is a branch of genetic algorithms where the
solution strings are replaced with variable length
programs. Sugisaka® and Wang' show basic thoughts
of how to apply genetic algorithms to robot control
in some paper before. The goal of GP is to find a
program that can be run so as to solve defined
problem. Based on MDPs model above, a program
in fact stands for a policyn. Then the problem of
learning becomes that of how to evolve programs so
as to satisfactory results (optimal policies) can be
found out finally. From now in this paper PROG
denotes a genetic program. The genetic program is
evaluated for fitness by executing PROG.

In usual PROGs are decoded in format of -
ary tree with n being the maximal number of sub-
trees that a non-leaf node can contain. A non-leaf
node encodes a function f. A leaf node stands for an
action, which can be executed by the agent. So in
order to initialize PROG population, a function set
F={f,.f,...it with k functions and a terminal set
T={t,t,...t} with | terminals must be decided
definitely in advance. A most simple example is
quadratic equation analysis problem with
F={+,-*%7"} and T={2,a,b,c}. GP follows same
steps as GAs but the steps act a little differently in
order to make them reasonable to the new tree-type
structure. The best PROG for the problem will be
that shown in figure 1. The flow of GP operation is

shown in figure 2.

,b"‘b-2*2*a*c -b

2*a

Figure 1. One of the best ProG for
quadratic equation problem

Initialize the Population of PROGs arbitrarily

Loop until termination criterion satisfied or timeover
Evaluate PROGs in poputation

Loop until next generation population created
Seiect genetic operation probabilistically

Perform Reproduction

Perform Crossover

Perform Mutation

End loop

End loop

Figure 2. Genetic programming flowchart

Given the MDPs model, the set of action 4 can be
used as terminal set 7' directly. But the set of
function must be designed carefully so as to it can
observe environment well. In this paper, we will use
GP to solve robot soccer learning problem.

3 LEARNING ROBOT SOCCER BY GP

For many years robot game playing has been a
popular problem area for studies in artificial
intelligent and machine learning, for example those
conducted by John WS® and Ho Fet al. In our work
we use simulated soccer to study intelligent multi-
agent system. The reasons for us choosing such a
system as experiment bench are because (1) it is a
standard multiple agent system suitable to be studied,
(2) it is of flexibility. In other words we can expand
or contract the scale of system easily to meet our
needs. (3) it is ideal to tell whether an approach
better than other or not since it is a kind of

E-293

antagonistic game played by two teams. Initially our
researches in such game are limited to constructing
fixed strategies. But with the number of robot
players increasing, huge complexity of state space
makes it impossible for us to consider all conditions
the agent may encounter in a practical playing. That
is to say, pre-planned behaviors are not adaptive to
practical environment. Efforts for solving this
problem bring about ideas of learning robot soccer
game strategies. Especially we put our emphasis on
how to co-learn multiple agents simultaneously.

3.1 Robot soccer

Robot soccer game, denoted as
G{ Field(Size(lw), CoordinateSystem), ball,
Team,,,, , Team,,, Rule}, is played by two robot
teams, Teamy,,,, and Team,,. Each team is composed
of n robots, that is, Team={P,, ...,P,} n>1. The game
rule, Rule, comes from human being soccer version.
There are several kinds of methods to organize an
system to attend contest, such as (1) simulation
game in computer, (2) micro-robot system with
vision-based concentrated control, (3) simple robot
system with autonomous and distributed control, (4)
humanoid robot system and so on. In our case we
conduct simulations in computer at first. Then we
test obtained optimal strategies in vision-based
micro-robot system.

The ball is described as ball,{b(x,y), direction,
Velocity}. b(x,y) is center coordinates of the ball. The

Table 1. An example of Action set.

ball moves with velocity along orientation of
direction. A player also contains all of three
variables of P, (x,y) and direction velocity, and
moreover, the variable of Size(l,w) is included too.
For vision-based centralized system, a Boolean
variable for each ball and each player is added since
in some time the ball or player can not be identified.
At any sampling time point, a player can obtain
information i(p,#) of present environment. i(p,?)
includes 1) ball, , 2) Teamy,,. and Team,,,, 3) home
players’ behaviors in last sampling period. Of course
the information of Field is also knowable since it is
treated as global constant. With the number of
players increasing, the environment information
i(p,t) will become larger and larger. Processing of
i(p,t) will become very time-consuming. In this case,
we can just consider the information belonging to
the round with the radius of » and center coordinates
of p(x,y), that is, it assumes that the behavior of a
player mainly is affected by its circumference in
nearby.

3.2 Learning Single robot strategy

We start doing experiment from single robot
learning, that is, there are neither partners nor
opponents. A simulated robot in the play field can
execute any action from action set 4. An example of
set A is shown in table 1.

A, | go-forward

Move player p one step forward along its current direction,
(one step=Field. size.length/100)

A, | go-backward

Move player p one step opposite to its current direction

A, | drip-ball:

If player have the ball, it will move with ball in one step.
Otherwise it will execute action go-forward.

A, | kick-ball

If player have the ball, it will move execute go-forward and at same time the
ball obtain energy E. the speed of ball will be adjusted.
Otherwise player just execute action go-forward.

A, | Trun-to-ball
A, | Turn-to-goal
A, | Turn-to-there

or opponent goal
or position(x,y).

Change player’s direction so that it directs to ball

A; | noise-shoot

If player does not have the ball then do nothing.
Otherwise, execute furn(noise) at first and then kick-ball.
(This action is added in order to mimic the practical soccer game).

Except those actions listed in table 1, we also
try some other actions, such as avoid-obstacle and
shoot-to-goal, when we conducted experiment.
More actions was included, larger the PROG would
became. But from practical experiment results we
can not find that better performances appear if we

just add more actions into action set.

In our simulations, we design all members £,
but a special function Proc2, in the function set F
as two-branch conditional statement of IF-Then. In
a condition, the left node is executed if the
condition is TRUE, otherwise the right node is

E-294

executed. Proc2 is not a condition. Both children
nodes of it will be executed. Here we don’t want to
list all members included in the function set F since

Table 2 An example of function set.

we continue trying new functions while doing
experiment. We give some functions used in table 2.

Proc2

(Note:a special function, both of its children nodes are executed.)

F, | IF ball in hand THEN

F, | IF obstacle ahead THEN

F, | IF ball is near to opponent goal THEN

F; | IF ball is near to home goal THEN

F, | IF ball is between player with opponent goal THEN

F, | IF ball is between player with home goal THEN

Based on the GP flowchart shown in figure 2.
GP algorithm runs as following.

1. To Initialize the Population

In the case of GP, to initialize a population
means to generate n 2-ary trees. Normally a 2-ary
tree can be created by recursive algorithm. That is,
at first a member from set AUF is picked out
randomly and inserted in current position. If
selected member belongs to set F then left sub-tree
and right sub-tree of it are created separately. In our
case, the probability of selecting each member is
same. So this method will work only if there are
more than twice as many Actions as Functions.
Otherwise the tree maybe become infinitely big. By
the way, we keep the depth of the tree below 10. An
example of generated tree is shown in figure 3.

IF ball is near to
opponent goal

AN

IF obstacle IF ball in hand
ahead THEN
o Proc2 || Turn- IF
bac%ward to-ball obstacle
ahead

0- kick- go- Noise-
orw ball forwa shoot

ard rd

Figure 3. An example of PROG tree.

2. To evaluate PROGs in population.

In our case, we execute all PROGs in current
population in order to evaluate them. One entire
soccer game lasts 1 minute. When game is over,

every PROG is scored with a scalar, non-negative
fitness value, Fitness(PROGI)=number of goals
scored by PROG:s.

3.To perform GP
Crossover, Mutation)

Reproduction operation runs the same for a
GP as a GAs. The best m PROGs in current
population are reproduced in order to replace the
worst m PROGs. But the crossover and mutation
operation must be re-designed to be suitable for
tree-type genome. For crossover operation, at first a
crossover node in each parent PROG tree must be
selected. Unlike GAs, the crossover points in both
parents do not have to be the same. For mutation
operation, the leaf nodes and non-leaf nodes are not
interchangeable. A non-leaf node of action member
obviously leads grammar error.

GP is a general problem-solving method.
Basic operations of it are independent to practical
problems. In order to re-use the programming codes,
GP can be broken down into problem-dependent
and problem-independent parts with a carefully
designed interface between these two parts. Usually
the interface is a kind of structured input/output
files. Some general GP modules, for example the
GP kemel developed by Helmut H' at Vienna
university, can be downloaded for research. In our
laboratory, we developed our own GP VBX using
C++.

operations(Reproduction,

3.30Learning multiple robots strategy

Robot soccer game is a kind of multiple robot
tournament. In our case we try (3 by 3) and (5 by 5)
games. Obviously we can extend single agent GP
learning into multi-agent domain by 2 ways. The
simplest method named as simple team learning is
to learn all home player strategies separately where
partners in the play field are treated as part of
environment. Except those basic information such
as position and speed, any player can not know

E-295

what his partner had done and what he want to do in
next step. Because now 6/10 robots are involved in
the game, collisions between robots become so
frequent that robots always gather around the ball
and the game can not continue. So we have to add
collision-examining functions into F and collision-
avoiding actions into A.

Another approach named as sub-group
learning is to treat all home players as an indivisible
group or to divide them into several sub-groups. For
learning team/sub-group strategies, some changes
must be made on existing single agent learning
algorithms. Now the actions in set 4 ought to could
control not only single robot but also several robots
simultaneously.

For example new action pass-ball will let one
robot kick ball as well as move another robot to
suitable position so that it can get the ball.

Because opponents are involved in the game,
the fitness function becomes
Fitness(PROGI)=100+number of goals scored by
PROGs-number of goals scored by opponent . The
offset 100 ensure the fitness always positive.

3.40Experiments and results

We conduct three different types of
simulations-single robot, 3 by 3 and 5 by 5 using
single-agent learning, simple team learning and
sub-group learning separately. The parameters for
GP in the simulations are listed in Table 3. The
opponent team is driven by our old version of pre-
programming strategy.

Table 3. Parameters.

Team 1 3by35by5
Population 100 50 50
size

Generation 2000 2000 2000
Maximum 10 10 10
depth

Size of set a 10 14 16
Size of set F 4 6 7
crossover rate 0.2 0.2 0.2
mutation rate 0.05 0.05 0.05

Some experiment results are given in Figure
4 .From results above, we can find single robot
learning works quite well. In the 1000th generation,
the satisfied policy can be generated. But in 3*3
game, home team can not win the game at all. So it
seems that the simple team learning can not
automatically generate cooperative behaviors
among agents. In 5 by 5 game, because the
cooperation behaviors are considered in advance
when we designed the action set and function set.

Singe robot game

—— average score
—m— best score

3by 3game

—— average scre;
8- best soore

score

—— average soore
- best scre

The performances of learning become better, but it
is not optimal result, I think.

Figure 4 Results, from above
a)single robot game b)3x3 game c)5x5 game

4. CONCLUSION

We use simulated soccer game to study
machine learning and multi-agent learning. In this
paper, we compared single agent learning, simple
team learning and sub-group learning based on GP.
From results we know that single agent learning by
GP works well. But in simple team learning case,
expected cooperative behaviors among home
players did not appear at all. In 5 by 5 game, we
divide the home team into 3 sub-group of
{2(attacker),2(defender),1(goalkeeper)}. With
carefully designed action set A4, the sub-group
learning works better than simple team learning.
But some problems still exist. For example if the
number of player increases, the designing of action
set becomes very awkward. In our next works we
will 1) improving sub-group learning algorithms
and 2) try EF-based RL algorithms and compare it
with EF-free approaches

References

1. Koza JR (1992) Genetic programming-on the
programming of computers by the natural
selection. Cambridge, MA, MIT Press

E-296

Leslie PK and Michael LL (1996) A survey of
reinforcement learning. Journal of Artificial
Intelligence Research 4:237-285

Sugisaka M, Wang XS, Lee JJ (1998) The genetic
algorithms to evolve multiple agent cooperative
system. Proceedings of the International
Symposium on Artificial Life and Robotics
(AROB3), Beppu, Oita, Japan, Jan 19-21,1998,
pp.178-182

Sugisaka M, Wang XS (1997) The autonomous
evolution of cooperation activity of micro-robots
by genetic algorithms(GAs). Proceedings of the
29th ISCIE International Symposium on
Stochastic system and its Applications, Tokyo,
Japan, Nov 10-12, 1997, pp.29-32

John WS (1998) Colearning in different games.
Machine Learning 33:201-233

Ho F, Kamel M (1998) Learning coordination
strategies for cooperative multiagent systems.
Machine Learning 33:155-177

Helmut H (1996) A C++ class library for genetic
programming: the Vienna university of economics
genetic programming kernel-Operating
Instruction, 1:1-69

Guy C, George B, Brigitte DN (1996) Structure
properties and classification of kinematics and
dynamic models of wheeled mobile robot. IEEE
transactions on robotics and automation12(1) :
47-61

E-297

