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Abstract

This paper presents a fuzzy neural network, called
the fuzzy counterpropagation network, that structures its
inputs and generates its outputs in a manner based on
counterpropagation networks. The fuzzy counterpropa-
gation network is developed by incorporating the concept
of fuzzy clustering into the hidden layer responses. Three
learning algorithms are introduced for use with the pro-
posed network. Simulations demonstrate that fuzzy coun-
terpropagation networks with the proposed learning algo-
rithms work well on approximating bipolar and continu-

ous functions.

I. Introduction

Counterpropagation networks proposed by Hecht-Nielsen

(1987) provide an excellent example of hybrid learning
networks. Counterpropagation networks involve a hid-
den layer between input and output layers. The weights
associated with the connections between input and hid-
den layers are trained by unsupervised learning, and the
weights associated with the connections between hidden
and output layers are trained by supervised learning. The
most appealing feature of counterpropagation networks
is that they can usually be trained substantially faster
than conventional back-propagation networks. However,
there are a number of difficulties with the performance of
counterpropagation networks. They often generalize less
well on new patterns and form poorer approximations be-
tween input-output relationships than back-propagation
networks. In many cases, the number of hidden units in a
counterpropagation network must be large for the network
to be practically useful. Using too few hidden units results
in coarse boundaries between pattern clusters. This may
lead to poor approximations, and occasionally the first

layer becomes unstable during unsupervised training.

In this paper we present a fuzzy neural network, called
the fuzzy counterpropagation network, that structures its
inputs and generates its outputs in a manner based on
counterpropagation networks. Since the fuzzy counter-
propagation network is developed by incorporating the
concept of fuzzy clustering into the hidden layer responses,
it can be viewed as a result of applying fuzzy computing
to neural network techniques. In this paper we show that
this network can be trained to achieve a better level of
accuracy than a counterpropagation network of compa-
rable size. Three learning algorithms are introduced for
use with the proposed network; all have the same unsu-
pervised learning part but different supervised learning
parts. Simulations demonstrate that fuzzy counterprop-
agation networks with the proposed learning algorithms
work well on approximating bipolar and continuous func-

ions.
II. The Model

Consider a counterpropagation network with n inputs,
m hidden units, and p output units, in which input ter-
minals are denoted by z;, hidden units by k;, and output
units by yx. There are connections w;; from the inputs
to the hidden units and vy, from the hidden units to the
output units (see Fig. 1). For a given input vector x", hid-

den unit j generates hj, specifying whether or not input

vector X" activates hidden unit 7 as winner:

R =

3

(1)

1 if [[x" — wy|| < [|x" —wi|, for all I;
0 otherwise.

Thus, a single hidden unit wins the competition and be-
comes activated, and the remaining hidden units become

inactive.

In the fuzzy counterpropagation network proposed here,

the hidden units in the network have normalized activa-
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tion functions as follows (Jou, 1992):

PN (- 0

P S (e —wi)e ®

where a > 0 is the weighting exponent. Note that hj]
increases to 1 as input X" approaches w; and gradually
decreases to 0 as x" moves away from w;. Thus, hid-

den unit j gives a maximum response to the input vector

nearest to w;.

Given pattern r, output unit k simply produces

Ve =2 kv (3)

=1

The linear combination of the fuzzy activations of hidden
units provides a kind of interpolation and extrapolation.
This leads to significantly improved accuracy in mapping

approximation.
III. Learning Algorithms

Below we present three learning algorithms, each com-

bining unsupervised learning and supervised learning. The

three learning algorithms have the same unsupervised learn-

ing part but different supervised learning parts. The su-
pervised learning part always follows the unsupervised

learning part of the algorithm.
A. Unsupervised Learning

When an input vector X" is entered into the network,
all the hidden units compete on the basis of the distances
between their weight vectors w; and the input vector.
The on-line fuzzy c-means clustering rule (Bezdek, 1981)

prescribes for the change of the weights w;; the expression
Awy; = 1y (R 2] — wy). (4)

The goal of the unsupervised learning scheme is to draw
the weight vectors w; so that relevant features of input
stimuli are encoded. Since h} > O for every j,r, this
learning rule prevents stagnant weight vectors (or dead
units), which may occur in standard competitive learning
(Rumelhart and Zipser, 1985). The usual final result of
the unsupervised learning scheme is that the weight vec-
tors w; distribute themselves in an almost equiprobable

configuration in the input space.
B. Supervised Learning

For the networks we are considering, the error measure

or cost function for learning a training set of input-output
pairs {(x",t"})} is given by

I,
E= 1LYl - ul )
r k=1
This is a continucus differentiable function of every weight,

so we can use gradient descent to train appropriate pa-

rameters.
Algorithm 1

After the unsupervised learning process has ended the
weight vectors w; are frozen. The weights vj, of the net-

work are trained by the gradient descent rule as
Avji = nohj[t; — v (6)

where 0 < 7, < 1. The hybrid learning scheme presented
here is not optimal, since the hidden layer responses are
based on input stimuli only and are not optimized with

respect to output performance.

Algorithm 2

In addition to adjusting the weights vj; in the second
layer, it is desirable to modify the weights w;; in the first
layer during supervised learning. Since each hidden unit
output is a continuous differentiable function of the input,
the adaptation rule for w;; can be derived by gradient
descent as
2ny,hf[z] — wij] &

2t —wllva—uwl (7

k=1

Aw:: =
YT T =l

where 0 < 77, < 1.

Algorithm 8

In the above discussion the weighting exponent « is
assumed to be constant. We may generalize the activation
of each hidden unit in such a way that the hidden unit

has the following normalized activation:

b (I = wil?)es

P T — wi[) e (8)

where hidden unit 7 has its own weighting exponent o;.

In addition to modifying the weights w;; and v; in the

network, we may vary the weighting exponents a; dur-

ing supervised learning. The updating rule can also be
computed using gradient descent
P

Aoy = nah}In(|x" — w;{?) kzl[ti —villvi — vl (9)

where 0 < n, < 1.

V1. Simulation Examples

—998 -



To illustrate the computational capabilities of fuzzy
counterpropagation networks and the effectiveness of the
learning algorithms described above, we now present the
results of simulations in which these networks and algo-
rithms are applied to problems of function approximation.
For each problem, four learning schemes are used, namely,
one counterpropagation network using the hybrid learn-
ing algorithm (CPN) and three fuzzy counterpropagation
networks using Algorithms 1, 2, and 3 proposed in this
paper (FCPN1, FCPN2, and FCPN3, respectively).

In the first example, the four learning schemes were to
learn a continucus function with two inputs and one out-
put given by f(zy, z3) = cos(4rz,) cos(4mzy) exp[—10(zi+
zl)], where —1 < z;,z; < 1 (see Fig. 2). The training pat-
terns were generated from the given function so that at
each training step, a training pattern was randomly se-
lected and presented to the networks. The parameters
involved in learning are listed in Table 1(a). To examine
the effect of network size on learning performance, three
different network sizes were used: 10, 100, and 1000 hid-
den units. All the networks were trained for 10,000 steps
during unsupervised learning and 300,000 steps during
supervised learning. In general, a fuzzy counterpropaga-
tion network should form a better approximation than a
standard counterpropagation network of comparable size.
Examination of the rms errors shows that the fuzzy coun-
terpropagation networks using Algorithm 1 did not work
much better than the standard counterpropagation net-
works. This is because in Algorithm 1 the hidden layer
responses are not optimized with respect to output perfor-
mance. Learning performance improved when the weights
in both layers were adjusted during supervised learning
(Algorithm 2), and improved further when Algorithm 3
was used. Fig. 3 illustrates the three-dimensional repre-
sentations synthesized by CPN, FCPN1, and FCPN2 with
1000 hidden units and FCPN3 with 100 hidden units after

learning the given continuous function.

Our second example is to learn to classify the train-
ing patterns in a two-dimensional space into two classes,
as shown in Fig. 4. The training pattern was associated
with a class value 1 if it belonged to class 1 (the interior
of the “cross”) and a class value —1 if it belonged to class
2 (the exterior of the “cross”). Thus, the networks we
used had two inputs and one output, and they learned the
mapping {rom feature vector to class value. Two network
sizes, 20 and 100 hidden units, were used; all the networks
were run with identical learning rates, as shown in Table
1(b). During unsupervised learning, the networks were

trained for 19,000 steps. During supervised learning, the

training process was continued for 100,000 steps. Fig. 5
depicts the three-dimensional representations of the po-
tential fields synthesized over the two-dimensional input
space by the networks with 100 hidden units. The de-
cision boundaries learned by the networks are shown in
Fig. 6. The counterpropagation network had only one
winning hidden unit, and thus a sharp three-dimensional
representation was obtained. FCPN1 had a smoother
three-dimensional representation than CPN did, but no
significant improvement was observed. Accurate decision
boundaries were obtained by both FCPN2 and FCPN3.
Examining Fig. 5 and 6 reveals that FCPN3 provided a
better three-dimensional representation than FCPN2 did,
since the weighting exponents controlling the hidden layer

responses were adjusted by FCPN3.
V. Conclusion

In this paper we have introduced the concept of a
fuzzy counterpropagation network and presented a num-
ber of learning algorithms. The fuzzy counterpropagation
network architecture was developed by incorporating the
concept of fuzzy clustering into a standard counterprop-
agation network. Because they relax the winner-take-all
constraint, fuzzy counterpropagation networks are able
to exhibit interpolating behavior. Three learning algo-
rithms with the same unsupervised part but different su-
pervised parts were introduced. The network using the
hybrid learning algorithm (Algorithm 1} did not really
work much better than a standard counterpropagation
network trained by a similar hybrid algorithm. A back-
propagation algorithm (Algorithm 2) was then developed
so that all the weights of the fuzzy counterpropagation
network were optimized with respect to output perfor-
mance. The great appeal of this scheme lies in its compu-
tational capability and the small number of hidden units
it requires. In addition to adjusting the weights in the net-
work, we may also modify the weighting exponents using
gradient descent, which results in Algorithm 3. The last
algorithm demonstrated the best learning performance,
since all the parameters involved in the network were ad-
justed to minimize the output error. The present exercise
provides a suitable justification for current efforts to char-
acterize unknown systems using the fuzzy neural network

approach.
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Table 1: Learning parameters.
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Figure 2: A continuous function to be learned by the Figure 4: A set of bipolar training patterns to be learned
neural networks. by the neural networks.

Figure 3: Three-dimensional representations synthesized by (a) CPN, (b) FCPN1, (c)
FCPN2, and (d) FCNP3 after learning the continuous function.
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Figure 5: Three-dimensional representations synthesized by (a) CPN, (b) FCPN1, (c)
FCPN2, and (d) FCNP3 after learning the set of bipolar training patterns.
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Figure 6: Decision boundaries learned by (a) CPN, (b) FCPN1, (c) FCPN2, and (d)
FCNP3 on the set of bipolar training patterns.
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