Min-Jae JUNG;Kwang-Yeol YOON;Sang-Rul KIM;Su-Hye KIM
Journal of Wellbeing Management and Applied Psychology
/
v.6
no.2
/
pp.27-31
/
2023
Purpose: Establishment of a real-time monitoring system for odor control in traditional markets in Gangwon-do and a system for linking prevention facilities. Research design, data and methodology: Build server and system logic based on data through real-time monitoring device (sensor-based). A temporary data generation program for deep learning is developed to develop a model for odor data. Results: A REST API was developed for using the model prediction service, and a test was performed to find an algorithm with high prediction probability and parameter values optimized for learning. In the deep learning algorithm for AI modeling development, Pandas was used for data analysis and processing, and TensorFlow V2 (keras) was used as the deep learning library. The activation function was swish, the performance of the model was optimized for Adam, the performance was measured with MSE, the model method was Functional API, and the model storage format was Sequential API (LSTM)/HDF5. Conclusions: The developed system has the potential to effectively monitor and manage odors in traditional markets. By utilizing real-time data, the system can provide timely alerts and facilitate preventive measures to control and mitigate odors. The AI modeling component enhances the system's predictive capabilities, allowing for proactive odor management.
International Journal of Computer Science & Network Security
/
v.23
no.11
/
pp.183-189
/
2023
A stroke is a medical disease where a blood vessel in the brain ruptures, causes damage to the brain. If the flow of blood and different nutrients to the brain is intermittent, symptoms may occur. Stroke is other reason for loss of life and widespread disorder. The prevalence of stroke is high in growing countries, with ischemic stroke being the high usual category. Many of the forewarning signs of stroke can be recognized the seriousness of a stroke can be reduced. Most of the earlier stroke detections and prediction models uses image examination tools like CT (Computed Tomography) scan or MRI (Magnetic Resonance Imaging) which are costly and difficult to use for actual-time recognition. Machine learning (ML) is a part of artificial intelligence (AI) that makes software applications to gain the exact accuracy to predict the end results not having to be directly involved to get the work done. In recent times ML algorithms have gained lot of attention due to their accurate results in medical fields. Hence in this work, Stroke disease identification system by using Machine Learning algorithm is presented. The ML algorithm used in this work is Artificial Neural Network (ANN). The result analysis of presented ML algorithm is compared with different ML algorithms. The performance of the presented approach is compared to find the better algorithm for stroke identification.
This review article discusses the integration of artificial intelligence (AI) in assisted reproductive technology and provides key concepts to consider when introducing AI systems into reproductive medicine practices. The article highlights the various applications of AI in reproductive medicine and discusses whether to use commercial or in-house AI systems. This review also provides criteria for implementing new AI systems in the laboratory and discusses the factors that should be considered when introducing AI in the laboratory, including the user interface, scalability, training, support, follow-up, cost, ethics, and data quality. The article emphasises the importance of ethical considerations, data quality, and continuous algorithm updates to ensure the accuracy and safety of AI systems.
As an interest in the development of artificial intelligence(AI) technology in the water supply sector increases, we have developed an AI algorithm that can predict improvement decision-making ratings through repetitive learning using the data of pipe condition evaluation results, and present the most reliable prediction model through a verification process. We have developed the algorithm that can predict pipe ratings by pre-processing 12 indirect evaluation items based on the 2020 Han River Basin's basic plan and applying the AI algorithm to update weighting factors through backpropagation. This method ensured that the concordance rate between the direct evaluation result value and the calculated result value through repetitive learning and verification was more than 90%. As a result of the algorithm accuracy verification process, it was confirmed that all water pipe type data were evenly distributed, and the more learning data, the higher prediction accuracy. If data from all across the country is collected, the reliability of the prediction technique for pipe ratings using AI algorithm will be improved, and therefore, it is expected that the AI algorithm will play a role in supporting decision-making in the objective evaluation of the condition of aging pipes.
Kim Dohyoung;Kim Hyunsuk;Lee Sunpyo;Oh Injong;Park Seungbum
Journal of Korea Society of Digital Industry and Information Management
/
v.19
no.4
/
pp.97-115
/
2023
In South Korea, chronic kidney disease(CKD) impacts around 4.6 million adults, leading to a high reliance on hemodialysis. For effective dialysis, vascular access is crucial, with decisions about vascular surgeries often made during dialysis sessions. Anticipating these needs could improve dialysis quality and patient comfort. This study investigates the use of Artificial Intelligence(AI) to predict the timing of surgeries for dialysis vessels, an area not extensively researched. We've developed an AI algorithm using predictive maintenance methods, transitioning from machine learning to a more advanced deep learning approach with Long Short-Term Memory(LSTM) models. The algorithm processes variables such as venous pressure, blood flow, and patient age, demonstrating high effectiveness with metrics exceeding 0.91. By shortening the data collection intervals, a more refined model can be obtained. Implementing this AI in clinical practice could notably enhance patient experience and the quality of medical services in dialysis, marking a significant advancement in the treatment of CKD.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.11a
/
pp.230-231
/
2023
This study proposes a deep reinforcement learning-based algorithm to automatically generate a ship's passage plan. First, Busan Port and Gwangyang Port were selected as target areas, and a container ship with a draft of 16m was designated as the target vessel. The experimental results showed that the ship's passage plan generated using deep reinforcement learning was more efficient than the Q-learning-based algorithm used in previous research. This algorithm presents a method to generate a ship's passage plan automatically and can contribute to improving maritime safety and efficiency.
KIPS Transactions on Computer and Communication Systems
/
v.10
no.5
/
pp.155-162
/
2021
n-step TD learning is a combination of Monte Carlo method and one-step TD learning. If appropriate n is selected, n-step TD learning is known as an algorithm that performs better than Monte Carlo method and 1-step TD learning, but it is difficult to select the best values of n. In order to solve the difficulty of selecting the values of n in n-step TD learning, in this paper, using the characteristic that overestimation of Q can improve the performance of initial learning and that all n-step returns have similar values for Q ≈ Q*, we propose a new learning target, which is composed of the maximum and the mean of all k-step returns for 1 ≤ k ≤ n. Finally, in OpenAI Gym's Atari game environment, we compare the proposed algorithm with n-step TD learning and proved that the proposed algorithm is superior to n-step TD learning algorithm.
Park, JongMin;Kim, JuJin;Park, JunHo;Lee, JongSung;Song, Eunjee
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.598-601
/
2016
최근 알파고로 인해 인공지능의 인기가 급부상하고 있고 '머신러닝'의 가능성과 위상을 널리 알려 컴퓨터 및 여러 분야에서 연구단계를 넘어 실용화, 상업화 될 가능성을 확인 시켜주었다. 본 연구는 전망 있는 인공지능산업에 발맞춰 비록 '알파고' 같은 고성능 완벽한 인공지능이 아니지만 랜덤 상태의 초기에서 한 최적의 해를 찾기 위한 도구로서, 유전알고리즘(genetic algorithms)을 사용하여 목표 값에는 최대한 수렴하도록 하는 학습형 AI 게임을 개발하였다. 본 연구에서 개발한 게임은 향후 각각의 다양한 개성을 가진 양산형 인공지능 게임개발에 응용되리가 사료된다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.11
/
pp.1486-1494
/
2021
Character recognition is a technology required in various platforms, such as smart parking and text to speech, and many studies are being conducted to improve its performance through new attempts. However, with low-quality image used for character recognition, a difference in resolution of the training image and test image for character recognition occurs, resulting in poor accuracy. To solve this problem, this paper designed an end-to-end learning neural network that combines image super-resolution and character recognition so that the character recognition model performance is robust against various quality data, and implemented an alternative whole learning algorithm to learn the whole neural network. An alternative end-to-end learning and recognition performance test was conducted using the license plate image among various text images, and the effectiveness of the proposed algorithm was verified with the performance test.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.9
/
pp.2961-2975
/
2022
The Location-Based Service (LBS) is one of the most well-known services on the Internet. Positioning is the primary association with LBS services. This study proposes an intelligent LoRa-based positioning system, called AI@LBS, to provide accurate location data. The fingerprint mechanism with the clustering algorithm in unsupervised learning filters out signal noise and improves computing stability and accuracy. In this study, data noise is filtered using the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm, increasing the positioning accuracy from 95.37% to 97.38%. The problem of data imbalance is addressed using the SMOTE (Synthetic Minority Over-sampling Technique) technique, increasing the positioning accuracy from 97.38% to 99.17%. A field test in the NTUST campus (www.ntust.edu.tw) revealed that AI@LBS system can reduce average distance error to 0.48m.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.