• Title/Summary/Keyword: Lean premixed combustion

Search Result 187, Processing Time 0.024 seconds

Effects of CO2 Addition in Downstream Interaction between 2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합화염 사이의 후류상호작용에 있어서 CO2 첨가 효과)

  • Keel, Sang In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.29-36
    • /
    • 2013
  • Numerical study was conducted to clarify effects of added $CO_2$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced. The most discernible difference between the two with and without having $CO_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the (H, O, OH)-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with relatively short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $CO_2$ suppressed flame stabilization. Particularly this phenomenon was appreciable at flame conditions which lean and rich extinction boundary was merged. The detailed discussion of chemical effects of added $CO_2$ was addressed to the present downstream interaction.

Effects of H2O Addition in Downstream Interaction between H2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합 화염 사이의 후류상호작용에 있어서 H2O 첨가 효과)

  • Park, Jeong;Kwon, Oh Boong;Kim, Tae Hyung;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • Numerical study was conducted to clarify effects of added $H_2O$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced in increase of strain rate. The most discernible difference between the two with and without having $H_2O$ and/or $H_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the OH-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with very short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $H_2O$ help lean flames at relatively low strain rate be sustained, and suppress the flame stabilization at high strain rates.

Lean Burn Combustion Characteristics of Propane Premixed Flame in Electric Field (전기장 인가에 따른 프로판 예혼합 화염의 희박연소 특성)

  • Minseok Kim;Junyoung Choi;Taehun Kim;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2023
  • In this study, characteristics of a propane-air premixed flame sin DC electric field was investigated. The stainless steel Bunsen burner and the stainless steel ring were used as electrode, and the high voltage supply was used for applying electric field. Flammability range increased significantly when the positive voltage was applied because of extension of LBO limit, while it shrank when the negative voltage was applied. The reason for this was not much related to the burning velocity, but the induced flow around the burner by electric field. withNOx production slightly increased after positive voltage was applied in identical equivalence ratio. Nevertheless, it was advantageous to apply the positive electric field to reduce the NOx since the extension of LBO limit makes the burner possible to operate in very low equivalence ratio.

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

1D and 3D Thermoacoustic Combustion Instability Modeling (1D 및 3D 열음향 연소불안정 모델링)

  • Kim, Jin Ah;Lim, Jaeyoung;Kim, Jihwan;Pyo, Yeongmin;Kim, Deasik
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.113-114
    • /
    • 2015
  • In this study, 1D and 3D thermoacoustic analysis model were developed in order to predict fundamental characteristics of combustion instability in a gas turbine lean premixed combustor. The 1D network model can be used to analyze frequency and growth rate of combustor instability by simply dividing whole system into a couple of acoustic sub-elements, while the 3D Helmholtz solver model can predict directly acoustic modes as well as basic properties of combustion instability. Prediction results of both 1D and 3D models generally showed a good agreement with the measurements, even if there was a slight overestimation for instability range.

  • PDF

Emission studies of a dual swirl burner in the region of lean equivalence ratios (희박한 당량비 구간에서 이중 선회버너의 배출특성 연구)

  • Park, Taejoon;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.111-112
    • /
    • 2013
  • An experimental study of a dual swirl burner was conducted to analyze NOx emission in the lean conditions. The dual swirl burner is composed of a combination of swirling jet premixed(main section) and diffusion flames(pilot section). It was operated with a co-swirling configuration and overall equivalence ratios between 0.6 and 0.8. The purpose of this study is to analyze experimentally the characterization of flame temperature and NOx concentration in reacting zone and to supply the useful experimental data for numerical simulations. The measurements of temperature and NOx concentration were captured using a thin digitally-compensated thermocouple and a sampling quartz probe with quenching effect of sudden expansion, and were measured by the NOx analyzer of chemiluminescence method. We could analyse the NOx emission characteristics comparing the temperature distributions in the lean equivalence ratios.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

Development of a Rapid Compression Expansion Machine and Compression Ignition Combustion of Homogeneous Premixtures (급속압축팽창기의 제작과 완전 예혼합기의 압축착화 연소실험)

  • 조상현;김기수;임병택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2004
  • A flywheel-driven rapid compression and expansion machine is developed and utilized for experimental study of homogeneous charge compression ignition combustion. Compression ignition of homogeneous charge in IC engines offers possibilities of realizing ultra-lean engine operation with greatly reduced NOx and particulate formation. Fundamental investigations are carried out in order to better understand this ideal engine combustion mechanism. Perfectly premixed propane-air mixtures of various equivalence ratio are compression-ignited in the rapid compression and expansion machine, and the characteristics of the auto-ignition and the following combustion process are analyzed.

An Effect of Pressure Fluctuations of a Combustion Chamber on the Modulation of Equivalence Ratio in the Channel of the Burner (연소실 압력 변동이 버너내부의 당량비 변조에 미치는 영향)

  • Hong, Jung-Goo;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.202-207
    • /
    • 2007
  • In order to understand the phenomena of combustion instability, an experimental study was conducted at the moderate pressure and ambient temperature conditions. The flame behavior and the pressure fluctuations were measured in a dump combustor. Various types of combustion modes occurred in accordance with the equivalence ratio and the fuel supplying conditions. The fluctuation of pressure, heat release and equivalence ratio were measured by piezoelectric pressure sensor, high speed Intensified Charge Coupled Device (HICCD) camera and gas chromatography respectively. Two representative modes were self-excited pressure oscillations at the resonance of combustion chamber (200Hz) and instabilities related to the modulated fuel flow rate through the fuel holes (10Hz). It is found that, especially in an unchoked fuel flow condition, the modulation of the fuel flow rate affects the characteristics of flame behavior and pressure fluctuations in a lean premixed flame.