• Title/Summary/Keyword: Lean Mixture Combustion

Search Result 154, Processing Time 0.024 seconds

Flame and Combustion Characteristics of D.I. HCCI Diesel Engine using a Visualization Engine (가시화 엔진을 이용한 직분식 예혼합 압축착화 디젤엔진의 화염 및 연소특성)

  • 권오영;류재덕;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.100-107
    • /
    • 2002
  • Combustion characteristics of diesel engine depends on mixture formation process during Ignition delay and premixed flame region. Fuel and air mixture formation has a great influence on the exhaust emission. Therefore, the present study focused on the combustion mechanism of Homogeneous Charge Compression Ignition (HCCI) engine. This study was carried out to investigate the combustion characteristics of direct injection type HCCI engine using a visualization engine. To investigate the combustion characteristics, we measured cylinder pressure and calculated heat release rate. In addition, we investigated the flame development process by using visualization engine system. From the experimental result of HCCI engine, we observed that cool flame was always appeared in HCCI combustion and magnitude of cool flame was proportional to magnitude of hot flame. And we also found that fuel injection timing is more effective to increase lean homogeneous combustion performance than intake air temperature. Since increasing the intake air temperature improved fuel vaporization before the fuel atomizes, we concluded that increasing the temperature has disadvantage fur homogeneous premixed combustion.

Reduction of Lean VOC Emission by Reforming with a Rotating Arc Plasma and Combustion with a Turbulent Partially-Premixed Flame (난류 부분예혼합화염과 로테이팅 아크 플라즈마를 이용한 난연성 유증기의 연소처리)

  • Ahn, Taekook;Lee, Daehoon;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • Large-scale fuel tanks emit massive amount of hardly-combustible VOC mixtures which are light hydrocarbon species in dilution with nitrogen and carbon dioxide. We have developed a lab-scale burner to combust those VOC mixtures by use of a turbulent partially-premixed flame as a pilot flame. For a higher HC treatment ratio, the mixture gases were reformed by a rotating arc plasma device. The results showed that the nitrogen mole fraction and the injecting speed of the VOC mixture influence on the performance of the burner. It was also found that the size of the pilot flame and the power supplied to the plasma device determine the overall HC treatment ratio and the concentrations of CO and NOx in the exhaust gas.

ENGINE CONTROL USING COMBUSTION MODEL

  • Ohyama, Y.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 2001
  • The combination of physical models of an advanced engine control system was proposed to obtain sophisticated combustion control in ultra-lean combustion, including homogeneous compression-ignition and activated radical combustion with a light load and in stoichiometric mixture combustion with a full load. Physical models of intake, combustion and engine thermodynamics were incorporated, in which the effects of residual gas from prior cycles on intake air mass and combustion were taken into consideration. The combined control of compression ignition at a light load and sparit ignition at full load for a high compession ratio engine was investigated using simulations. The control strategies of the variable valve timing and the intake pressure were clarified to keep auto-ignition at a light load and prevent knock at a full load.

  • PDF

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(3) : Exhaust Emission (정적연소기에서의 메탄-공기 혼합기의 연소특성(3) : 배기배출물)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • A cylindrical constant volume combustion chamber was used to investigate the exhaust emission characteristics of homogeneous charge, stratified pattern and inhomogeneous charge under various conditions using gas chromatography. In the case of homogeneous charge condition, the $CO_2$ concentration is proportional to excess air ratio and overall charge pressure, the $CO_2$ concentration is proportional to excess air ratio and the UHC concentration is inversely proportional to ignition time and overall charge pressure. In the case of stratified pattern, the RI(rich injection) condition shows better exhaust emission characteristics, especially $CO_2$, than that of HI (homogeneous injection) or LI (lean injection) conditions. In inhomogeneous charge conditions, when initial charge pressure is increased, $CO_2$ and UHC concentration is reduced but $O_2$ concentration is increased. And when the excess air ratio of initial charge mixture is 3.0, UHC and $CO_2$concentration show lowest values.

CO, $CO_2$ and NOx Emission Characteristics of Methane-Air Premixed Flame in Constant Volume Combustion Chamber (정적연소실에서 메탄-공기 예혼합화염의 CO, $CO_2$ 및 NOx 배출 특성)

  • 김태권;김성훈;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 2000
  • This paper presents the effects of initial pressure of mixture on CO, $CO_2$ and NOx emissions in constant volume combustion chamber. The CO, $CO_2,O_2,N_2$ concentrations in the chamber are determined by thermal conductivity detection (Gas-chromatograph) wile the NOx concentration is measured by chemiluminescent detection (NOx Analyser). Methane-air mixture is used as premixed fuel and the measurements are taken with equivalence ratios($\phi$) varing from 0.6 to 1.3, and initial pressures of methane-air mixture varing from 0.1MPa to 0.8MPa in constant volume combustion chamber. The NOx concentration steadily increases with increasing equivalence ratio, peaks in lean flame ($\phi$=0.85~0.9), and then rapidly decreases. However, as the initial pressure of mixture is increased, the equivalence ratio corresponding to the point of peak [NOx] shifts towards leaner conditions. This is caused by a similar shift in the peak [CH], which is caused by the variation with pressure and equivalence ratio of the rate of CH production from $CH_2$ and OH. The maximum combustion pressure peaks at $\phi$ =1.05 and the $CO_2$ concentration peaks at $\phi$=0.95~1.0 while the CO concentration rises sharply at the condition of fuel-rich mixtures. This is caused by complete combustion at $\phi$=0.95.

  • PDF

Combustion Characteristics of Methane-Hydrogen-Air Premixture(II) (메탄-수소-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

The Experimental Study on the Low-temperature Combustion Characteristics of DME Fuel in a Compression Ignition Engine

  • Yoon, Seung Hyun
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.190-196
    • /
    • 2017
  • The aim of this work is to investigate the combustion and exhaust emission characteristics of low-temperature combustion (LTC) at various EGR test conditions using a single cylinder common-rail diesel engine. In high EGR rate combustion mode with DME fuel, 30% (${\Phi}=0.61$) and 50% (${\Phi}=0.86$) of EGR were respectively examined, and then the combustion, exhaust emissions, nano-particle characteristics of each cases were measured. From these results, it revealed that The ignition delay and combustion duration are prolonged as the increase of EGR rate. In addition, at an advanced injection timing (BTDC $30^{\circ}$), ignition delays were fairly increased because the dilution effect of EGR and also low charge in-cylinder temperature created a lean mixture, thus decreased the peak release rate.

A Visualization Study on the Effects of Ignition Systems on the Flame Propagation in a Constant Volume Combustion Chamber (가시화를 이용한 정적연소기에서 점화장치가 화염전파에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1652-1661
    • /
    • 2000
  • A visualization study using the schlieren method is adopted in an optically-accessible, cylindrical constant volume combustion chamber to identify the mechanism of ignition energy and ignition system interaction in spark ignited, lean gasoline-air mixture. In order to research the effects of ignition system on flame propagation, two kinds of ignition system are designed, and several kinds of spark plugs are tested and evaluated. To control the discharge energy, the dwell time is varied. The initial flame development is quantified in terms of 2-D images which provides information about the projected flame area and development velocity as a function of ignition system and discharge energy. The results show that high ignition energy and extended spark plug gap can shorten the combustion duration in lean mixtures. The material, diameter and configuration of electrodes the flame development by changing the transfer efficiency from electrical energy to chemical energy and discharge energy. However these factors do not affect of flame development as much a ignition energy or extended gap does.

A Study on the Effect of Fast Burn for Different Combustion Chamber Geometries of Gasoline Engine Using an Ion Current Method (이온전류법에 의한 가솔린엔진 연소실 형상별 급속연소효과 연구)

  • 강건용;서승우;정동수;장영준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1633-1639
    • /
    • 1993
  • In spark ignition engine, EGR of lean mixture operation has advantage in emission, but disadvantages in power output and combustion flame propagation. Fast burn system is known to be a useful method to solve these disadvantages. This paper presents the characteristics of in-cylinder flow for different combustion chamber geometries, and the correlation between the in-cylinder flow and the combustion flame speed using an ion current method.

Combustion Modeling of Nano/Micro Aluminum Particle Mixture (나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링)

  • Yoon, Shi-Kyung;Shin, Jun-Su;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.15-25
    • /
    • 2011
  • One dimensional combustion modeling of aluminum combustion behavior is proposed. Combustion model is assumed that region consists as follows ; preheat, reaction, post reaction region. Flame speed as a function of particle size, equivalence ratio for unitary particles and fraction ratio of micro to nano particle size for binary particles were investigated for lean burn condition at 1 atm. Results were compared with experimental data. For unitary particles, flame speed increase as particle size decreases, but opposite trend with equivalence ratio. For binary particles, flame speed increases proportionally as nano particle fraction increases. For flame structure, separated or overlapping flames are observed, depending on the fraction of nano sized particles.