DOI QR코드

DOI QR Code

Reduction of Lean VOC Emission by Reforming with a Rotating Arc Plasma and Combustion with a Turbulent Partially-Premixed Flame

난류 부분예혼합화염과 로테이팅 아크 플라즈마를 이용한 난연성 유증기의 연소처리

  • Ahn, Taekook (Department of Mechanical Engineering, Dankook University) ;
  • Lee, Daehoon (Korea Institute of Machinery & Materials) ;
  • Park, Sunho (Department of Mechanical Engineering, Dankook University)
  • Received : 2016.12.28
  • Accepted : 2017.02.21
  • Published : 2017.03.30

Abstract

Large-scale fuel tanks emit massive amount of hardly-combustible VOC mixtures which are light hydrocarbon species in dilution with nitrogen and carbon dioxide. We have developed a lab-scale burner to combust those VOC mixtures by use of a turbulent partially-premixed flame as a pilot flame. For a higher HC treatment ratio, the mixture gases were reformed by a rotating arc plasma device. The results showed that the nitrogen mole fraction and the injecting speed of the VOC mixture influence on the performance of the burner. It was also found that the size of the pilot flame and the power supplied to the plasma device determine the overall HC treatment ratio and the concentrations of CO and NOx in the exhaust gas.

Keywords

References

  1. M.L. Boeglin, D. Wessels and D. Henshel, "An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties", Environ. Res., 100 (2006) 242-254. https://doi.org/10.1016/j.envres.2005.04.004
  2. W. Zhao, L.F. Al-Nasser, S. Shan, J. Li, Z. Skeete, N. Kang, J. Luo, S. Lu, C.-J. Zhong, C.J. Grausgruber and R. Harris, "Detection of mixed volatile organic compounds and lung cancer breaths using chemiresistor arrays with crosslinked nanoparticle thin films", Sens. Actuator B-Chem., 232 (2016) 292-299. https://doi.org/10.1016/j.snb.2016.03.121
  3. S. Yang, K. Gao and X. Yang, "Volatile organic compounds(VOCs) formation due to interactions between ozone and skin-oiled clothing: Measurements by extraction analysis-reaction method", Build. Environ., 103 (2016) 146-154. https://doi.org/10.1016/j.buildenv.2016.04.012
  4. P. Shao, J. An, J. Xin, F.K. Wu, J. Wang, D. Ji and Y. Wang, "Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China", Atmos. Res., 176-177 (2016) 64-74. https://doi.org/10.1016/j.atmosres.2016.02.015
  5. S. Pan, Y. Choi, A. Roy, X. Li, W. Jeon and A.H. Souri, "Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas", Atmos. Environ., 120 (2015) 404-416. https://doi.org/10.1016/j.atmosenv.2015.09.029
  6. M. Tamaddoni, R.S. Gharebagh, S. Nario, M.H. Zadeh and N. Mostoufi, "Experimental study of the VOC emitted from crude oil tankers", Process Saf. Environ. Protect., 92 (2014) 929-937. https://doi.org/10.1016/j.psep.2013.10.005
  7. T.K. Poddar, S. Majumdar and K.K. Sirkar, "Removal of VOCs from air by membrane-based absorption and stripping", J. Membrane Sci., 120 (1996) 221-237. https://doi.org/10.1016/0376-7388(96)00145-7
  8. F.I. Khan and A.K. Ghoshal, "Removal of volatile organic compounds from polluted air", J. Loss Prevent. Proc., 3 (2000) 527-545.
  9. Z. Xhou, Z.Q. Tao, B.Y. Lin and W.J. Kong, "Numerical investigation on effects of high initial temperatures and pressures on flame behavior of CO/$H_2$/Air mixtures near the dilution limit", Int. J. Hydrogen Energ., 38 (2013) 274-281. https://doi.org/10.1016/j.ijhydene.2012.10.017
  10. J.S. Oh, Q.S Khan and Y.B. Yoon, "Nitrogen dilution effect on flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air", Fuel, 89 (2010) 1492-1498. https://doi.org/10.1016/j.fuel.2009.10.001
  11. S. Kondo, K. Takizawa, A. Takahashi and K. Tokuhashi, "Extended Le Chatelier's formula and nitrogen dilution effect on the flammability limits", Fire Saf. J., 41 (2006) 406-417. https://doi.org/10.1016/j.firesaf.2006.03.002
  12. S. Kondo, K. Takizawa, A. Takahashi and K. Tokuhashi, "On the temperature dependence of flammability limits of gases", J. Hazard. Mater., 155 (2008) 440-448. https://doi.org/10.1016/j.jhazmat.2007.11.085
  13. T. Ahn, W. Lee and S. Park, "Stabilization of inert-gas-diluted co-flow diffusion flame by a pilot flame", J. Korean Soc. Combust., 20 (2015) 19-25. https://doi.org/10.15231/jksc.2015.20.4.019
  14. D. Lee, K. Kim, M. Cha, and Y. Song, "Plasma-controlled chemistry in plasma reforming of methane", Int. J. Hydrogen Energ., 35 (2010) 10967-10976. https://doi.org/10.1016/j.ijhydene.2010.07.029
  15. Y. Song, J. Lee, M. Cha, S. Kim and J. Ryu, "A study on a combined de-NOx process of plasma oxidation and $NH_3$ SCR for diesel engine", J. Korean Soc. Combust., 12 (2007) 39-46.
  16. Y.C. Lim and H.K. Suh, "Prediction of biodiesel combustion, CO and NOx emission characteristics in accordance with equivalence ratio", J. Korean Soc. Combust., 21 (2016) 1-7.
  17. I. Choi and K. Lee, "An experimental study on combustion instability in model gas turbine combustor using simulated SNG fuel", J. Korean Soc. Combust., 20 (2015) 32-42. https://doi.org/10.15231/jksc.2015.20.1.032
  18. K. Hoyermann, F. Mauss and T. Zeuch, "A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flames", Phys. Chem. Chem. Phys., 6 (2004) 3824-3835. https://doi.org/10.1039/B404632C
  19. J. Beeckmann, R. Hesse, S. Kruse, A. Berens, N. Peters, H. Pitsch and M. Matalon, "Propagation speed and stability of spherically expanding hydrogen/air flames: Experimental study and asymptotics", Proc. Combust., Inst., article in press (2016).
  20. H.S. Kim, K.Y. Ahn, H.K. Kim, M.J. Yu and S.W. Baek "Characteristics of NOx formation in a coaxial multi-air staged LPG flame", Trans. Korean Soc. Mech. Eng. B., 27 (2003) 215-226.

Cited by

  1. Combustion of Inert-Gas-Diluted Volatile Organic Compounds Using a Fuel-Rich Pilot Flame and Rotating Arc Plasma vol.39, pp.2, 2019, https://doi.org/10.1007/s11090-019-09953-0