• Title/Summary/Keyword: Lean Development

Search Result 226, Processing Time 0.025 seconds

2-Dimensional Visualization of the Flame Propagation in a Four-Valve Spark-Ignition Engine (가솔린엔진에서의 2차원 화염 가시화)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 1996
  • Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.

  • PDF

Mechanical Performance of Fiber Reinforced Lean Concrete for Subbase of Newly Developed Multi-Functional Composite Pavement System (다기능 복합 포장용 섬유보강 콘크리트 기층 재료의 역학적 특성평가)

  • Jang, Young-Jae;Park, Cheol-Woo;Park, Young-Hwan;Jung, Woo-Tai;Choi, Sung-Yong;Yoo, Pyeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.21-29
    • /
    • 2012
  • PURPOSES: This study is to investigate the mechanical performance of the fiber reinforced lean concrete with respect to different types of fibers. METHODS: Increased vehicle weight and other causes from the exposed conditions have accelerated the deteriorations of road pavement. A new multi-functional composite pavement system is being developed recently in order to extend service life and upgrade the pavement. A variety of tests were conducted before and after hardening of the concrete. RESULTS: From the test results, it was found that the use of different types of fibers did not affect the compressive strength development. This might be due to the inherent property of the lean concrete. When steel fibers were used relatively greater flexural strength and flexural fracture toughness were developed. Also addition of fly ash by replacing a part of Portland cement the fracture toughness was slightly increased. CONCLUSIONS: It has been known that the addition of fibers and use of mineral admixture can be positively considered in the development of multi-functional composite pavement system as its required mechanical performance is obtained.

Development of Standard Guideline and Process for Safety Design using DMADOV of the Lean 6 Sigma (린 6시그마 DMADOV를 이용한 시스템 안전설계 표준지침 및 프로세스 구축)

  • Kim, Hyung-Kwan;Park, Do-Hyun;Huh, Hyoung-Jo;Sung, Won-Hyuk
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.97-106
    • /
    • 2015
  • System is the organization of hardware, software, personnel and facilities needed to perform a designated function within a stated environment with specified results. The trend of modern systems is getting more complex and larger. The system is necessary for modern society but the minor malfunction of the system can result the enormous human and material losses. Recently it is being heightened the concern for system safety and required to be built and applied Safety Engineering standard Guideline for safety of complex and large-sized system. This paper describes the System Engineering Process model integrated with Safety Engineering and the establishment of standard safety guidelines for safety of product development using DMADOV Methodology of the Lean 6 Sigma.

Construction Lean Process Development and Application for Field Productivity Improvement (건설 현장 생산성 향상을 위한 Lean 프로세스 개발과 적용에 대한 연구)

  • Kim, Yong-pyo;Jeong, Yong-ho;Lee, Min-jae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.88-97
    • /
    • 2020
  • Practical and efficient application of lean construction, which has been proposed as an alternative to the limitations of traditional construction management methods, was developed to facilitate application on site and improve productivity through the fusion of traditional construction management methods. The concepts of Lean Time and Lean Cycle Time, which are the principles of lean construction, were introduced to eliminate waste and smooth flow production and pursuit of perfection, and the goal of establishing and improving the criteria for measurement and improvement was established and the information collection template was configured and applied to ensure reliability of measurement and analysis. Based on this, the project feasibility, reliability, and continuous improvement process were applied to the Field case to verify its effectiveness.

The Lean Startup: Korea's Case Study-Cardoc (린 스타트업 방법론의 적용: 한국 '카닥' 사례를 중심으로)

  • Na, Hee Kyung;Lee, Hee Woo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.11 no.5
    • /
    • pp.29-43
    • /
    • 2016
  • The Lean Startup, a methodology for minimizing failure rate of startups, has been receiving attention since its publication in 2011. Although it has been receiving enormous attention as an effective methodology of startups' growth and the emergence of unicorn companies, it is undeniable that the theoretical research and cases on this topic have not been fully accumulated in Korea. Progress of management theory has been made when combining the theory and case studies. In this paper, we thus excavated the 'Cardoc' case, which has applied the lean startup concept to the entire process of service and customer development from the inception of its product design. The following are the findings of the case. First, for the successful application of lean startup, it is essential that all team members to understand the lean startup concept and are willing to apply it thoroughly to the business management. Second, the prompt launching of MVP(Minimum Viable Product) is more important than table discussion. Third, it is crucial to select the appropriate key metrics and analytic tools for effective learning. Fourth, startup must scale up promptly as soon as it verifies the product-market fit through the BML(Build-Measure-Learn) iteration cycle. Fifth, all new business expansion should be lean. Cardoc is currently testing new MVPs in order to move onto the next scale-up process with huge investments in newly added segments. This study is meaningful in that it elaborates the representative case of a Korean startup that has applied the lean startup strategy under the circumstance of insufficient discussion of Korean startup cases in comparison with growing attention both in concept development and case accumulation abroad. We hope that this paper can be a stepping stone for future relevant research on the implementation of lean startup methodology in Korea.

  • PDF

Visualization of Initial Flame Development in an SI Engine (스파크 점화 엔진에서 초기화염 발달의 가시화)

  • Ohm Inyong
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

Positive Effects of Diphlorethohydroxycarmalol (DPHC) on the Stability of the Integument Structure in Diet-Induced Obese Female Mice

  • Kim, Chae-lim;Cha, Sun-yeong;Chun, Min Young;Kim, Bumsoo;Choi, Min Young;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.19 no.3
    • /
    • pp.145-152
    • /
    • 2015
  • Diphlorethohydroxycarmalol (DPHC) is a known to modulate the expression of extracellular matrix (ECM) components in 3T3-L1. However, the possible role of DPHC in integument stability during obesity induction is not clear yet. We evaluated the effects of DPHC on collagen or elastic fiber quantity in integument during obesity induction with high-fat diet. The dorsal back integument sections were stained with hematoxylin-eosin, Masson trichrome, and Verhoff-Van Gieson. The intensities of collagen fibers and elastin fibers were analyzed with ImageJ. The number of fibroblasts was counted at ${\times}1,000$ fields. The number of fibroblast was increased by obesity induction, but DPHC suppressed it in a concentration-dependent manner both in lean and obese mice. On the other hand, the intensities of collagen fibers were increased by DPHC treatment in obese mice groups but not in lean mice groups. The intensities of collagen fibers of obese mice were lower than that of the lean mice in 0% group. However, the number became similar between lean and obese mice by the treatment of DPHC. The intensity of elastic fibers was increased in the lean mice with the concentration of DPHC. In the obese mice group, there were increasing patterns but only significant at 10% DPHC group. The intensity of elastic fibers of obese mice was higher than lean mice in 0%, 1%, and 10% groups. Histologically epithelial cells and follicle cells which were diffused nuclear staining forms were increased by DPHC treatment. The results suggest that the activity of integument cells during obesity induction can be modulated by DPHC.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.

Performance Analysis of Strength Development of FRC Base Depending on Maturity (적산온도에 의한 FRC 기층의 강도발현 성능 분석)

  • Choi, Sung-Yong;Park, Young-Hwan;Jung, Woo-Tai
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • PURPOSES : In this study, we analyzed the compressive strength characteristics of lean base concrete in relation to changes in the outdoor temperature after analyzing the cold and hot weather temperature standards and calculated the minimum and maximum temperatures when pouring concrete. We examined the rate of strength development of lean base concrete in relation to the temperature change and derived an appropriate analysis formula for FRC base structures by assigning the accumulated strength data and existing maturity formula. METHODS : We measured the strength changes at three curing temperatures (5, 20, and $35^{\circ}C$) by curing the concrete in a temperature range that covered the lowest temperature of the cold period, $5^{\circ}C$, to the highest temperature of the hot period, $35^{\circ}C$. We assigned the general lean concrete and FRC as test variables. A strength test was planned to measure the strength after 3, 5, 7, 14, and 28 days. RESULTS : According to the results of compressive strength tests of plain concrete and FRC in relation to curing temperature, the plain concrete had a compressive strength greater than 5 MPa at all curing temperatures on day 5 and satisfied the lean concrete standard. In the case of FRC, because the initial strength was substantially reduced as a result of a 30% substitution of fly ash, it did not satisfy the strength standard of 5 MPa when it was cured at $5^{\circ}C$ on day 7. In addition, because the fly ash in the FRC caused a Pozzolanic reaction with the progress into late age, the amount of strength development increased. In the case of a curing temperature of $20^{\circ}C$, the FRC strength was about 66% on day 3 compared with the plain concrete, but it is increased to about 77% on day 28. In the case of a curing temperature of $35^{\circ}C$, the FRC strength development rate was about 63% on day 3 compared with the plain concrete, but it increased to about 88% on day 28. CONCLUSIONS : We derived a strength analysis formula using the maturity temperatures with all the strength data and presented the point in time when it reached the base concrete standard, which was 5 MPa for each air temperature. We believe that our findings could be utilized as a reference in the construction of base concrete for a site during a cold or hot weather period.

Development of a High Energy Ignition System Using Corona Discharge (코로나 방전을 이용한 고에너지 점화 시스템 개발)

  • Park, Kyongseok;Choi, Duwon;Kang, Hyehyun;Lee, Jonghwa;Park, Jinil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.650-655
    • /
    • 2015
  • A high energy ignition system is essential for lean burn or high EGR gasoline engine, which is getting more and more interest to improve fuel economy. The high energy ignition systems comprise plasma jet, laser beam, corona discharge and so on. In this study, a high energy ignition system using corona discharge is developed and tested in a constant volume combustion chamber. The developed system shows extension of lean limit of propane-air mixture and enhencement of combustion speed. Various shape of corona discharge plugs are also tested and compared in this study.