• 제목/요약/키워드: Leakage signal

Search Result 342, Processing Time 0.024 seconds

Tactical Beamforming for Anti-Jamming Under Limited Feedback (제한된 피드백 상황에서의 항재밍을 위한 전략적 빔형성)

  • Lim, Sung-Ho;Han, Sungmin;Lee, Jaeseok;Choi, Ji-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1410-1413
    • /
    • 2016
  • Array beamforming for anti-jamming means that jamming signals are superposed destructively, while superposing information signals constructively at a receiver. However, according to channel state variation, the anti-jamming performance of the beamforming can be degraded because of large beamwidth of the sidelobe and lower selectivity of the mainlobe. To mitigate this problem, we introduce a beamformed decoy signal which uses frequency band distinguished from the information signal to make the jammer concentrate its jamming power to a wrong target under limited feedback. In this paper, we show that the performance of the proposed scheme can approach that of optimal one with perfect feedback.

Envelope Elimination and Restoration Transmitter for Efficiency and Linearity Improvement of Power Amplifier (전력증폭기의 효율 및 선형성 개선을 위한 포락선 제거 및 복원 송신기)

  • Cho, Young-Kyun;Kim, Changwan;Park, Bong Hyuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.292-299
    • /
    • 2015
  • An envelope elimination and restoration transmitter that uses a tri-level envelope encoding scheme is presented for improving the efficiency and linearity of the system. The proposed structure amplifies the same magnitude signal regardless of the input peak-to-average power ratio and reduces the quantization noise by spreading out the noise to the out-of-band frequency, resulting in the enhancement of power efficiency. An improved linearity is also obtained by providing a new timing mismatch calibration technique between the envelope and phase signal. Implementation in a 130 nm CMOS process, transmitter measurements on a 20-MHz long-term evolution input signal show an error vector magnitude of 3.7 % and an adjacent channel leakage ratio of 37.5 dBc at 2.13 GHz carrier frequency.

Investigation of Error Factors from an Impact Hammer Test for Developing a Statistic Based Technique for Model Updating (통계 기반 모델 개선을 위한 임팩트 해머 실험의 오차 요인 분석)

  • Lee, Su;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.185-198
    • /
    • 2016
  • In this work, experimental errors from an impact hammer test were investigated to develop a statistic-based technique for updating a finite element model. Digital signal processing was analyzed by using theoretical models and experiments when errors occurred during the experimental procedure. First, the duration time and peak level of the excitation signal, the stiffness and position of elastic springs connecting the specimen as well as the support, position and mass of the accelerometer were considered as error factors during the experiment. Then the picket fence effect, leakage, and exponential window function were considered as candidate error factors during the digital signal processing. Finally, methods to reduce errors are suggested.

Dynamic Analysis and Control Loop Design of ZVS-FB PWM DC/DC Converter (ZVS-FB PWM DC/DC 변환기의 동특성 해석 및 제어기 설계)

  • 이득기;윤길문;차영길;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.231-239
    • /
    • 1998
  • This paper presents the dynamic analysis and control loop design of a zero voltage switching full bridge (ZVS-FB) PWM DC/DC converter. The small-signal model is derived incorporating the effects of phase shift control and the utilization of transformer leakage inductance and power FET junction capacitance to achieve zero voltage resonant switching. These effects are modeled by introducing additional feedforward and feedback terms for duty cycle modulation. Based on the results of the small-signal analysis, the control loop is designed using a simple two-pole one-zero compensation circuit. To show the validity of the design procedures, the small signal analysis of the closed loop system is carried out and the potential of the zero voltage switching and the superiority of the dynamic characteristics are verified through the experiment with a 2 kW prototype converter.

  • PDF

Economic Analysis of Optical Communication Control System in High Voltage Magnetizer (고전압 착자기에서의 누전 사고 방지를 위한 광통신 제어시스템의 도입 방안과 경제성 분석)

  • Bae, Young Woo;Kim, Wooju;Hong, June Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.103-117
    • /
    • 2019
  • Demand for high power motors is rapidly increasing as the 4th industry and convergence technology has recently emerged. In order to produce high-strength permanent magnets, the magnets used for magnetization have been increased from DC 300V in the 1970s to DC 2.5kV in the 2010s, Up to DC 10kV in the 2030s, It is expected that higher voltage will be used to magnetize. However, in the case of a magnetizer using an existing electric signal control device, it is necessary to use a control device with a high-voltage insulation function in case a high voltage used for magnetization is leaked to the control device. If a short circuit accident occurs, the controller must be shut down and serious problems such as excessive repair costs arise. In this study, a control system adopting optical communication method instead of electric signal control method is proposed to prevent leakage currents in high-voltage magnetizer. We design a transmitter(Tx) and a receiver(Rx) device for the optical communication control device and implemented a prototype connecting the optical cable. In order to demonstrate the utility of high-voltage magnetizer using the optical communication control device, we analyzed the initial cost and the yearly cost for the years to analyze the net present value. As a result, In the case of the low-voltage magnetizer, the electric signal control method cost less, As the operating voltage of the magnetizer becomes higher. It is confirmed that it takes less cost when the optical communication control device is used.

A Fundamental Study on Leak Detection System for Water Supply Valve Using Smart Bolt (상수도 밸브 누수 탐지용 스마트 볼트 적용의 기초 연구)

  • Park, Chul;Kim, Young-seok;Jung, Hae-Wook;Choi, Sang-sik;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.144-154
    • /
    • 2020
  • Purpose: This paper is a fundamental study on the applicability of the smart bolt developed for monitoring system to detect the leakage of water supply valve. Method: A leak detection experiments were conducted using the smart bolt having embedded strain sensors and accelerometer. The smart bolt used in study meets the allowable criteria of torque and tensile stress for water supply system, and it can be applied to a joint of the water supply valve by behaving well within the allowable limits. Result: As a result of the simulated leak tests, a leak signal at the valve leak point was detected in a band of 60Hz, and the main pipe leaking point was observed to produce a leak signal having much higher frequency than that of the valve leak point. This seems to result in a total coupled vibration under unconfined conditions of the pipes. Conclusion: The smart bolts appeared applicable to detecting a leaking signal from the water supply valve.

Effect of Window Function for Measurement of Ultrasonic Nonlinear Parameter Using Fast Fourier Transform of Tone-Burst Signal (톤버스트 신호의 퓨리에 변환을 이용한 초음파 비선형 파라미터 측정에서 창함수가 미치는 영향)

  • Lee, Kyoung-Jun;Kim, Jongbeom;Song, Dong-Gi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • In ultrasonic nonlinear parameter measurement using the fast Fourier transform(FFT) of tone-burst signals, the side lobe and leakage on spectrum because of finite time and non-periodicity of signals makes it difficult to measure the harmonic magnitudes accurately. The window function made it possible to resolve this problem. In this study, the effect of the Hanning and Turkey window functions on the experimental measurement of nonlinear parameters was analyzed. In addition, the effect of changes in tone burst signal number with changes in the window function on the experimental measurement was analyzed. The result for both window functions were similar and showed that they enabled reliable nonlinear parameter measurement. However, in order to restore original signal amplitude, the amplitude compensation coefficient should be considered for each window function. On a separate note, the larger number of tone bursts was advantageous for stable nonlinear parameter measurement, but this effect was more advantageous in the case of the Hanning window than the Tukey window.

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

Model-based and wavelet-based fault detection and diagnosis for biomedical and manufacturing applications: Leading Towards Better Quality of Life

  • Kao, Imin;Li, Xiaolin;Tsai, Chia-Hung Dylan
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.153-171
    • /
    • 2009
  • In this paper, the analytical fault detection and diagnosis (FDD) is presented using model-based and signal-based methodology with wavelet analysis on signals obtained from sensors and sensor networks. In the model-based FDD, we present the modeling of contact interface found in soft materials, including the biomedical contacts. Fingerprint analysis and signal-based FDD are also presented with an experimental framework consisting of a mechanical pneumatic system typically found in manufacturing automation. This diagnosis system focuses on the signal-based approach which employs multi-resolution wavelet decomposition of various sensor signals such as pressure, flow rate, etc., to determine leak configuration. Pattern recognition technique and analytical vectorized maps are developed to diagnose an unknown leakage based on the established FDD information using the affine mapping. Experimental studies and analysis are presented to illustrate the FDD methodology. Both model-based and wavelet-based FDD applied in contact interface and manufacturing automation have implication towards better quality of life by applying theory and practice to understand how effective diagnosis can be made using intelligent FDD. As an illustration, a model-based contact surface technology an benefit the diabetes with the detection of abnormal contact patterns that may result in ulceration if not detected and treated in time, thus, improving the quality of life of the patients. Ultimately, effective diagnosis using FDD with wavelet analysis, whether it is employed in biomedical applications or manufacturing automation, can have impacts on improving our quality of life.

HEMT Mixer for Phase Conjugator Applications in the LS Band (공액 위상변위기용 LS 밴드 HEMT 혼합기)

  • 전중창
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.239-244
    • /
    • 2004
  • In this paper, we have developed a frequency mixer which can be used as a microwave phase conjugator in the LS band retrodirective antenna system. The mixer as a phase conjugator must have an If signal of which frequency is nearly as high as that of an RF signal, so this fact brings difficulty in the combination of input signals and the design of impedance matching circuit. The circuit configuration is chosen to be of the gate mixer using a pseudomorphic HEMT device. The operating frequencies are 4.00 ㎓, 2.01 ㎓, and 1.99 ㎓ for LO, RF, and IF, respectively. Conversion gain is measured to be 12.5 ㏈ and 1 ㏈ compression point -34 ㏈m at the LO power of -7 ㏈m. The mixer fabricated in this research is the single-ended type, where RF leakage signal appears inevitably at the If port because RF and If frequencies are almost the same. The circuit topology suggested here can be applied directly to the design of balanced-type mixers and phase conjugators.